精英家教网 > 高中数学 > 题目详情
14.自贡某工厂于2016年下半年对生产工艺进行了改造(每半年为一个生产周期),从2016年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示(如图).已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润20元,生产一件合格品可获利润10元,生产一件次品要亏损10元
(Ⅰ)求该企业2016年一年生产一件产品的利润为10的概率;
(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (Ⅰ)确定上、下半年的数据,可得“中位数”,优质品,合格品,次品的个数,可得该企业2016年一年生产一件产品的利润为10的概率;
(Ⅱ)求出K2,与临界值比较,即可得出是否有95%的把握认为“优质品与生产工艺改造有关”.

解答 解:(Ⅰ)上半年的中位数是35,优质品有6个,合格品有10个,次品有9个;下半年的“中位数”为33,优质品有10个,合格品有10个,次品有5个,
∴该企业2016年一年生产一件产品的利润为10的概率为$\frac{20}{50}$=0.4;
(Ⅱ)由题意得:

上半年下半年合计
优质品61016
非优质品191534
252550
K2=$\frac{50(6×15-19×10)^{2}}{25×25×16×34}$=1.47
由于1.47<3.841所以没有95%的把握认为“优质品与生产工艺改造有关”.

点评 本题考查概率的计算,考查独立性检验的运用,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知p:?x∈[$\frac{1}{4}$,$\frac{1}{2}$],2x<m(x2+1),q:函数f(x)=4x+2x+1+m-1存在零点,若“p且q”为真命题,则实数m的取值范围是($\frac{4}{5}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x-m|-1.
(1)若不等式f(x)≤2的解集为{x|-1≤x≤5},求实数m的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥t-2对一切实数x恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x-alnx+b,a,b为实数.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+3,求a,b的值;
(Ⅱ)若|f′(x)|<$\frac{3}{{x}^{2}}$对x∈[2,3]恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示是一个几何体的三视图,则这个几何体外接球的体积为(  )
A.36πB.$\frac{64\sqrt{2}}{3}$πC.8$\sqrt{6}$πD.$\frac{8}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“x≥1”是“lgx≥0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知抛物线y=$\frac{1}{8}$x2,则其准线方程是y=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{3}{x^3}-{x^2}-3x-\frac{1}{3}$.
(1)求函数y=f(x)在(1,f(1))点处的切线方程;
(2)求函数y=f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知三条直线a、b、c两两平行且不共面,这三条直线可以确定m个平面,这m个平面把空间分成n个部分,则(  )
A.m=2  n=2B.m=2   n=6C.m=3   n=7D.m=3  n=8

查看答案和解析>>

同步练习册答案