精英家教网 > 高中数学 > 题目详情
8.已知不等式|x-2|<3的解集为 A,函数y=ln(1-x)的定义域为B,则图中阴影部分表示的集合为{x|1≤x<5}.

分析 由韦恩图中阴影部分表示的集合为A∩(∁RB),然后利用集合的基本运算进行求解即可.

解答 解:A={x||x-2|<3}={x|-1<x<5},B={x|y=ln(1-x)}={x|1-x>0}={x|x<1},
则∁UB={x|x≥1},
由韦恩图中阴影部分表示的集合为A∩(∁UB),
∴A∩(∁UB)={x|1≤x<5},
故答案为:{x|1≤x<5}.

点评 本题主要考查集合的基本运算,利用韦恩图确定集合关系,然后利用数轴求基本运算是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在数列{an}中,a1=1且an+1=an+$\frac{1}{n(n+1)}$.
(1)求出a2,a3,a4
(2)归纳出数列{an}的通项公式,并用数学归纳法证明归纳出的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(m,cos2x),$\overrightarrow{b}$=(sin2x,1),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,且y=f(x)的图象过点(${\frac{π}{12}$,$\sqrt{3}}$).
(1)求m的值;
(2)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.世园会期间,某班有四名学生参加了志愿工作.将这四名学生分配到A,B,C三个不同的展馆服务,每个展馆至少分配一人.则四人中学生甲不到A馆的概率为(  )
A.1B.$\frac{5}{6}$C.$\frac{2}{3}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.盒中装有12个小球,除颜色外其余均相同,其中9个白的,3个红的,从盒中取3个(不管是否是红色)均染成红色后再放回盒中,此时盒中红色球个数ξ是一个随机变量,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={y|y=$\sqrt{2-x}$},B={x|x2-2x>0},则(  )
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图为一个观览车示意图.该观览车圆半径为5米,圆上最低点与地面距离为1米,60秒转动一圈.图中OA与地面垂直.设从OA开始转动,逆时针转动θ角到OB.设B点与地面距离为h.
(Ⅰ)当θ=150°时,求h的值;
(Ⅱ)若经过t秒到达OB,求h与t的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个总体中的80个个体编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,9,要用(错位)系统抽样的方法抽取一个容量为8的样本,即规定先在第1组随机抽取一个号码,记为i,依次错位地得到后面各组的号码,即第k组中抽取个位数为i+k(当i+k<10)或i+k-10(当i+k≥10)的号码,在i=6时,所抽到的第8组的号码是74.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某企业有甲、乙两个研发小组,他们研发一件新产品成功的概率分别为$\frac{3}{4}$和$\frac{2}{3}$,本年度计划研发的新产品件数分别为2件和1件.设甲、乙两组的每次研发均相互独立.
(1)求该企业本年度至少有一件新产品研发成功的概率;
(2)已知研发一件新产品的成本为10百万元,成功研发一件新产品可获得50百万元的销售额,求该企业本年度在这3件新产品上获得的利润X的分布列和数学期望.

查看答案和解析>>

同步练习册答案