精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A、B的对边分别为a、b且A=2B,sinB=$\frac{3}{5}$,则$\frac{a}{b}$的值是(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{4}{3}$D.$\frac{8}{5}$

分析 由sinB的值求出cosB的值,原式利用正弦定理化简,把A=2B代入利用二倍角的正弦函数公式化简,约分后把cosB的值代入计算即可求出值.

解答 解:∵A=2B,sinB=$\frac{3}{5}$,
∴cosB=$\sqrt{1-(\frac{3}{5})^{2}}$=$\frac{4}{5}$,
∴由正弦定理得:$\frac{a}{b}$=$\frac{sinA}{sinB}$=$\frac{sin2B}{sinB}$=$\frac{2sinBcosB}{sinB}$=2cosB=$\frac{8}{5}$,
故选:D.

点评 此题考查了正弦定理,同角三角函数间的基本关系,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若关于x的不等式(x-2a+1)(x-1)≤0的解集中有且只有三个整数,则实数a的取值范围是(-$\frac{1}{2}$,0]∪[2,$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知z是复数,i是虚数单位,若zi=1+i,则z=(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在边长为4的正方形ABCD中,E、F分别是BC、CD的中点,M、N分别是AB、CF的中点,将该正方形沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥,如图所示.
(1)证明:MN∥平面AEF;
(2)证明:AB⊥平面BEF;
(3)求四棱锥E-AFNM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在正项等比数列{an}中,若a1=1,且3a3,a2,2a4成等差数列,则log2(a1•a2•a3•a4•a5•a6•a7)=(  )
A.-28B.-21C.21D.28

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设p:2x2-3x+1≤0,q:x2-(2a+1)x+a(a+1)≤0,若¬q是¬p的充分不必要条件,则实数a的取值范围为0$≤a≤\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=|{x+\frac{a}{x}}|,({x>0}),a$为实数.
(1)当a=-1时,判断函数y=f(x)在(1,+∞)上的单调性,并加以证明;
(2)根据实数a的不同取值,讨论函数y=f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.运行如图所示的流程图,则输出的S的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,cosC=$\frac{sinC+2sinB}{2sinA}$
(1)求角A;
(2)若S△ABC=$\sqrt{3}$,sinB+sinC=1,求边a的值.

查看答案和解析>>

同步练习册答案