精英家教网 > 高中数学 > 题目详情
18.根据定积分的性质和几何意义,$\int_0^1$[$\sqrt{1-{{(x-1)}^2}}$-x]dx=$\frac{π-2}{4}$.

分析 首先利用定积分的可加性将所求写成两个定积分的差的形式,然后分别按照几何意义和求原函数的方法求定积分.

解答 解:已知$\int_0^1$[$\sqrt{1-{{(x-1)}^2}}$-x]dx=${∫}_{0}^{1}\sqrt{1-(x-1)^{2}}dx$-${∫}_{0}^{1}xdx$,
定积分${∫}_{0}^{1}\sqrt{1-(x-1)^{2}}dx$表示以(1,0)为圆心,1为半径的$\frac{1}{4}$圆,所以${∫}_{0}^{1}\sqrt{1-(x-1)^{2}}dx$=$\frac{1}{4}π$,
${∫}_{0}^{1}xdx=\frac{1}{2}{x}^{2}{|}_{0}^{1}=\frac{1}{2}$,
所以所求定积分为$\frac{π-2}{4}$;
故答案为:$\frac{π-2}{4}$.

点评 本题考查了定积分的可加性以及利用几何意义求定积分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.sin(-15°)=(  )
A.$\frac{\sqrt{2}+\sqrt{6}}{2}$B.$\frac{\sqrt{2}-\sqrt{6}}{2}$C.$\frac{\sqrt{2}+\sqrt{6}}{4}$D.$\frac{\sqrt{2}-\sqrt{6}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.用1,2,3,4,5,6这六个数字组成没有重复数字的六位数,其中1,3,5三个数字互不相邻的六位数有144个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.为了得到函数y=cos($\frac{1}{2}$x+$\frac{π}{3}$)的图象,只要把y=cos$\frac{1}{2}x$的图象上所有的点(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{2π}{3}$个单位长度D.向右平移$\frac{2π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.天气预报,端午节假期甲、乙、丙三地降雨的概率分别是0.9、0.8、0.75,若甲、乙、丙三地是否降雨相互之间没有影响,则其中至少一个地方降雨的概率为(  )
A.0.015B.0.005C.0.985D.0.995

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个棱长为2的正方体,它的顶点都在球面上,这个球的体积是(  )
A.B.2$\sqrt{3}$πC.4$\sqrt{3}$πD.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A+B=$\frac{5}{4}$π,且A、B≠kπ+$\frac{π}{2}$(k∈Z).
(Ⅰ)求证:(1+tanA)(1+tanB)=2;
(Ⅱ)求tan$\frac{5}{8}$π的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线C:x2=4y的焦点为F,准线为l,P是l上一点,Q是直线PF与抛物线C的一个交点,若$\overrightarrow{PF}$=4$\overrightarrow{QF}$,则|QF|=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足$\left\{\begin{array}{l}{x+2y≤1}\\{x≥0}\\{y≥0}\end{array}\right.$,则ω=$\frac{4x+2y-16}{x-3}$的取值范围是[5,6].

查看答案和解析>>

同步练习册答案