分析 首先利用定积分的可加性将所求写成两个定积分的差的形式,然后分别按照几何意义和求原函数的方法求定积分.
解答 解:已知$\int_0^1$[$\sqrt{1-{{(x-1)}^2}}$-x]dx=${∫}_{0}^{1}\sqrt{1-(x-1)^{2}}dx$-${∫}_{0}^{1}xdx$,
定积分${∫}_{0}^{1}\sqrt{1-(x-1)^{2}}dx$表示以(1,0)为圆心,1为半径的$\frac{1}{4}$圆,所以${∫}_{0}^{1}\sqrt{1-(x-1)^{2}}dx$=$\frac{1}{4}π$,
${∫}_{0}^{1}xdx=\frac{1}{2}{x}^{2}{|}_{0}^{1}=\frac{1}{2}$,
所以所求定积分为$\frac{π-2}{4}$;
故答案为:$\frac{π-2}{4}$.
点评 本题考查了定积分的可加性以及利用几何意义求定积分.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}+\sqrt{6}}{2}$ | B. | $\frac{\sqrt{2}-\sqrt{6}}{2}$ | C. | $\frac{\sqrt{2}+\sqrt{6}}{4}$ | D. | $\frac{\sqrt{2}-\sqrt{6}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{3}$个单位长度 | B. | 向右平移$\frac{π}{3}$个单位长度 | ||
| C. | 向左平移$\frac{2π}{3}$个单位长度 | D. | 向右平移$\frac{2π}{3}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.015 | B. | 0.005 | C. | 0.985 | D. | 0.995 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com