精英家教网 > 高中数学 > 题目详情
19.判断f(x)=ln(x+$\sqrt{{x}^{2}+1}$)的奇偶性.

分析 根据函数奇偶性的定义进行判断即可.

解答 解:∵f(x)=ln(x+$\sqrt{{x}^{2}+1}$),
∴f(x)+f(-x)=ln(x+$\sqrt{{x}^{2}+1}$)+ln(-x+$\sqrt{{x}^{2}+1}$)=ln(x+$\sqrt{{x}^{2}+1}$)(-x+$\sqrt{{x}^{2}+1}$)=ln1=0,
∴f(-x)=-f(x),
即函数f(x)是奇函数.

点评 本题主要考查函数奇偶性的判断,根据函数特点将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.求函数值域:y=4${\;}^{{x}^{2}-x}$(x∈[0,2])

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,C=150°,sinB=$\frac{1}{3}$,BC边的高设为AD,且AD=1,根据上述条件求:
(1)cos(A+60°)的值;
(2)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.写出下面数列的一个通项公式.
(1)2,4,6,8…
(2)10,20,30,40,…

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设α、β、γ为不重合平面,m、n为不重合直线,下列命题正确的是③⑤
①α⊥γ,β⊥γ⇒α∥β;②α⊥β,m?α,n?β⇒m⊥n;③α∥β,m?α⇒m∥β;④α∥β,m?α,n?β⇒m∥n;⑤α∥β,m∥n,m⊥α⇒n⊥β;⑥α⊥β,m⊥α⇒m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.a≠0,则y=ax2的焦点坐标和准线方程分别为(  )
A.$(\frac{a}{4},0)$   x=-$\frac{a}{4}$B.$(0,\frac{a}{4})$  y=-$\frac{a}{4}$C.$(\frac{1}{4a},0)$  x=-$\frac{1}{4a}$D.$(0,\frac{1}{4a})$  y=-$\frac{1}{4a}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.P(x0,y0)是圆x2+y2=R2内异于圆心的一点,则直线x0x+y0y=R2与圆x2+y2=R2的位置关系是(  )
A.相交B.相切C.相离D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|3≤x<7},函数f(x)=lg(-x2+12x-20)的定义域为集合B,集合C={x|5-a<x<a}.
(1)求B,A∪B,(∁RA)∩B;
(2)若C⊆(A∪B),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2lnx+$\frac{ax}{x+1}$,其中a为实常数.
(1)若f(x)在(0,+∞)上是增函数,求a的取值范围;
(2)若f(x)有两个不同的极值x1,x2,当x>0时,证明:$\frac{f({x}_{1})+f({x}_{2})}{x+1}$≥$\frac{f(x)-2x+2}{x}$.

查看答案和解析>>

同步练习册答案