精英家教网 > 高中数学 > 题目详情
6.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是不平行的向量,设$\overrightarrow a=\overrightarrow{e_1}+k\overrightarrow{e_2},\overrightarrow b=k\overrightarrow{e_1}+\overrightarrow{e_2}$,则$\overrightarrow a$与$\overrightarrow b$共线的充要条件是实数k等于±1.

分析 利用向量共线定理、共面向量基本定理即可得出.

解答 解:$\overrightarrow a$与$\overrightarrow b$共线的充要条件是存在实数λ使得$\overrightarrow{a}=λ\overrightarrow{b}$,
∴$\overrightarrow{{e}_{1}}+k\overrightarrow{{e}_{2}}$=λ$(k\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})$=$λk\overrightarrow{{e}_{1}}$+$λ\overrightarrow{{e}_{2}}$,
∵$\overrightarrow{e_1},\overrightarrow{e_2}$是不平行的向量,
∴$\left\{\begin{array}{l}{1=λk}\\{k=λ}\end{array}\right.$,解得k=±1.
故答案为:±1.

点评 本题考查了向量共线定理、共面向量基本定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A($\frac{2π}{3}$,0),B($\frac{8π}{3}$,0),则(  )
A.ω=$\frac{1}{2}$,φ=-$\frac{2π}{3}$B.ω=1,φ=-$\frac{2π}{3}$C.ω=$\frac{1}{2}$,φ=-$\frac{π}{3}$D.ω=1,φ=-$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,输出的S值为(  )
A.32B.50C.70D.90

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给定函数f(x)和g(x),若存在实常数k,b,使得函数f(x)和g(x)对其公共定义域D上的任何实数x分别满足f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.给出下列四组函数:
①f(x)=$\frac{1}{2^x}$+1,g(x)=sinx;
②f(x)=x3,g(x)=-$\frac{1}{x}$;
③f(x)=x+$\frac{1}{x}$,g(x)=lgx;
④f(x)=2x-$\frac{1}{2^x},g(x)=\sqrt{x}$
其中函数f(x)和g(x)存在“隔离直线”的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\sqrt{\frac{1-x}{x+2}}$的定义域是-2<x≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=2px(p>0)的焦点F,线段PQ为抛物线C的一条弦.
(1)若弦PQ过焦点F,求证:$\frac{1}{FP}+\frac{1}{FQ}$为定值;
(2)求证:x轴的正半轴上存在定点M,对过点M的任意弦PQ,都有$\frac{1}{{M{P^2}}}+\frac{1}{{M{Q^2}}}$为定值;
(3)对于(2)中的点M及弦PQ,设$\overrightarrow{PM}=λ\overrightarrow{MQ}$,点N在x轴的负半轴上,且满足$\overrightarrow{NM}⊥({\overrightarrow{NP}-λ\overrightarrow{NQ}})$,求N点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.集合 U={1,2,3,4,5,6},N={1,4,5},M={2,3,4},则 N∩(CUM)=(  )
A.{1,4,5}B.{4}C.{1,5}D.{ 1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在复平面内,复数z=$\frac{3+2i}{2i-2}$(i为虚数单位)的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设定义在R上的奇函数f(x)满足f(x)=x2-4(x>0),则f(x-2)>0的解集为(  )
A.(-4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(-∞,0)∪(4,+∞)D.(-4,4)

查看答案和解析>>

同步练习册答案