精英家教网 > 高中数学 > 题目详情
7.如图,四棱锥P-ABCD的底面为正方形,PD⊥平面ABCD,M为PC中点.
(1)求证:AP∥平面MBD;
(2)若AD=PD,求直线PB与平面ABCD所成角的正切值.

分析 (1)连接AC,BD,相交于点O,连接OM.利用三角形中位线定理可得:AP∥OM,再利用线面平行的判定定理即可得出.
(2)由PD⊥平面ABCD,可得:∠PBD为直线PB与平面ABCD所成角.在Rt△PBD中,tan∠PBD=$\frac{PD}{BD}$,即可得出.

解答 (1)证明:连接AC,BD,相交于点O,连接OM.
则点O为AC的中点,又M为PC中点.
∴AP∥OM,
又AP?平面MBD,OM?平面MBD,
∴AP∥平面MBD.
(2)解:∵PD⊥平面ABCD,
∴∠PBD为直线PB与平面ABCD所成角.
不妨设AB=1,
则PD=1,BD=$\sqrt{2}$.
在Rt△PBD中,tan∠PBD=$\frac{PD}{BD}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
∴直线PB与平面ABCD所成角的正切值为$\frac{\sqrt{2}}{2}$.

点评 本题考查了空间位置关系、空间角、直角三角形的边角关系,考查了空间想象能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若向量$\overrightarrow{a}$=(x,-1),$\overrightarrow{b}$=(log38,1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则23x+2-3x=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某化工厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如表所示:
ABC
483
5510
现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车品乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问分别生产甲、乙两种肥料,求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知平面α、β和直线a、b,若α∥β,a?α,b?β,则a、b的位置关系可能为平行或异面.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知等比数列{an}的首项为3,且对任意正整数n都有$\frac{{a}_{2n}}{{a}_{n}}$=$\frac{{3}^{4n-1}}{{3}^{2n-1}}$,则数列{an}的公比=9;a4=2187;数列{an}的前n项和为Sn=$\frac{3}{8}$×(9n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f(sinx)=cos2x,则f($\frac{\sqrt{3}}{2}$)等于(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知随机变量X~B(n,p),则E(X)等于(  )
A.pB.npC.p(1-p)D.np(1-p)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若a,b为实数,则“0<a|b|<1”是“b<$\frac{1}{a}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a、b∈R,且ab>0,则下列不等式中,恒成立的是(  )
A.a2+b2>2abB.|a|+|b|>2$\sqrt{ab}$C.$\frac{b}{a}$+$\frac{a}{b}$≥2D.ab+$\frac{1}{ab}$>2

查看答案和解析>>

同步练习册答案