精英家教网 > 高中数学 > 题目详情
不等式2|x-3|+|x-4|<2解集为
 
考点:绝对值不等式的解法
专题:选作题,不等式
分析:分类讨论,解具体的不等式,即可得出结论.
解答: 解:x≤3时,-2x+6-x+4<2,∴x>
8
3
,∴
8
3
<x≤3;
3<x<4时,2x-6-x+4<2,∴3<x<4;
x≥4时,2x-6+x-4<2,不成立,
∴不等式2|x-3|+|x-4|<2解集为(
8
3
,4)
故答案为:(
8
3
,4).
点评:本题考查绝对值不等式的解法,正确分类讨论是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=axlnx,(a≠0).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当a<0时,若对于任意的x∈(0,+∞),都有f(x)<3ax+1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a≥x2-ex-(x-1),则a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的函数f(x)=ex-ax在(0,1]上是增函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有n粒球(n≥2,n∈N*),任意将它们分成两堆,求出两堆球数的乘积,再将其中一堆任意分成两堆,求出这两堆球数的乘积,如此下去,每次任意将其中一堆分成两堆,求出这两堆球数的乘积,直到不能分为止,记所有乘积之和为Sn.例如,对于4粒球有如下两种分解:(4)→(1,3)→(1,1,2)→(1,1,1,1),此时S4=1×3+1×2+1×1=6;(4)→(2,2)→(1,1,2)→(1,1,1,1),此时S4=2×2+1×1+1×1=6,于是发现S4为定值6.请你计算S5的值为
 
,猜想Sn=
 
(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1,C2的极坐标方程分别ρcosθ=2,ρ=4cosθ(ρ≥0,0≤θ<
π
2
),则曲线C1与C2交点的极坐标表示为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若对任意的t∈R,关于x,y的方程组
2x+y-4=0
(x-t)2+(y-kt)2=16
都有两组不同的解,则实数k的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
2
x2-4lnx的单调递减区间是(  )
A、(-2,2)
B、(0,2)
C、(2,+∞)
D、(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的体积为(  )
A、
18
3
π
B、
20
3
π
C、18π
D、20π

查看答案和解析>>

同步练习册答案