精英家教网 > 高中数学 > 题目详情
函数f(x)=
1
2
x2-4lnx的单调递减区间是(  )
A、(-2,2)
B、(0,2)
C、(2,+∞)
D、(0,+∞)
考点:利用导数研究函数的单调性
专题:导数的概念及应用
分析:求出函数的定义域,求出函数的导函数,令导函数小于0求出x的范围,写出区间形式即得到函数y=
1
2
x2-4㏑x的单调递减区间.
解答: 解:函数的定义域为x>0
∵y′=x-
4
x

令x-
4
x
<0,由于x>0,从而得0<x<2,
∴函数y=
1
2
x2-4㏑x的单调递减区间是( 0,2).
故选B.
点评:求函数的单调区间的问题,一般求出导函数,令导函数大于0求出x的范围为单调递增区间;令导函数小于0求出x的范围为单调递减区间;注意单调区间是函数定义域的子集.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P1(x1,x2),P2(x2,y2)是以原点O为圆心的单位圆上的两点,∠P1OP2=θ(θ为钝角).若sin(θ+
π
4
)=
3
5
,则的x1x2+y1y2值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式2|x-3|+|x-4|<2解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(α+β)cosβ-cos(α+β)sinβ=0,则sin(α+2β)+sin(α-2β)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

cos
12
的值等于(  )
A、
6
+
2
2
B、
2
2
C、
6
-
2
4
D、
3
+
2
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠ACB=90°,BC=2,AC=3,点D在斜边AB上,以CD为棱把它折成直二面角A-CD-B,折叠后AB的最小值为(  )
A、
6
B、
7
C、2
2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x-lnx的单调增区间为(  )
A、(0,1)
B、(-∞,0)
C、(1,+∞)
D、(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=2x为双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线,则双曲线C的离心率是(  )
A、
3
B、
3
2
C、
5
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|2x+1|-|x-2|.
(1)解不等式f(x)>0;
(2)已知关于x的不等式a+3<f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案