精英家教网 > 高中数学 > 题目详情
已知曲线C1,C2的极坐标方程分别ρcosθ=2,ρ=4cosθ(ρ≥0,0≤θ<
π
2
),则曲线C1与C2交点的极坐标表示为
 
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:把极坐标方程化为直角坐标方程,联立方程组求出两曲线交点的直角坐标,再把它化为极坐标.
解答: 解:∵曲线C1,C2的极坐标方程分别ρcosθ=2,ρ=4cosθ(ρ≥0,0≤θ<
π
2
),
∴曲线C1,C2的直角坐标坐标方程分别为x=2,(x-2)2+y2=4(x>0,y>0).
x=2
(x-2)2+y2=4
,结合x>0,y>0求得
x=2
y=2
,故交点的直角坐标为(2,2),
故曲线C1与C2交点的极坐标表示为(2
2
π
4
),
故答案为:(2
2
π
4
).
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,把点的直角坐标化为极坐标,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某超市制定“五一”期间促销方案,当天一次性购物消费额满1000元的顾客可参加“摸球抽奖赢代金券”活动,规则如下:
①每位参与抽奖的顾客从一个装有2个红球和4个白球的箱子中逐次随机摸球,一次只摸出一个球;
②若摸出白球,将其放回箱中,并再次摸球;若摸出红球则不放回,工作人员往箱中补放一白球后,再次摸球;
③如果连续两次摸出白球或两个红球全被摸出,则停止摸球.
停止摸球后根据摸出的红球个数领取代金券,代金券数额Y与摸出的红球个数x满足如下关系:Y=144+72x(单位:元).
(Ⅰ)求一位参与抽奖顾客恰好摸球三次即停止摸球的概率;
(Ⅱ)求随机变量Y的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线C1
x=2+
3
5
t
y=
4
5
t
(0<a<1为参数)和曲线C2:ρsin2θ=2cosθ相交于A、B两点,设线段AB的中点为M,则点M的直角坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
1≤x+y≤4
-2≤x-y≤2
,则目标函数z=
y+3
x+4
的最大值为
 
,最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式2|x-3|+|x-4|<2解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,曲线C1:ρ=cosθ与C2:ρ=a(a>0)只有一个交点,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(α+β)cosβ-cos(α+β)sinβ=0,则sin(α+2β)+sin(α-2β)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠ACB=90°,BC=2,AC=3,点D在斜边AB上,以CD为棱把它折成直二面角A-CD-B,折叠后AB的最小值为(  )
A、
6
B、
7
C、2
2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,其图象上相邻的两个对称轴之间的距离为π.
(1)求f(x)的解析式;
(2)若sinα-f(α)=
2
3
,求
2
sin(2α-
π
4
)+1
1+tanα
的值.

查看答案和解析>>

同步练习册答案