分析 由于c2=a2+b2,解出c,代入所求式子,再由a2+b2≥2ab,即可得到最大值.
解答 解:由于c2=a2+b2,
即有c=$\sqrt{{a}^{2}+{b}^{2}}$
则$\frac{a+b}{c}$=$\frac{a+b}{\sqrt{{a}^{2}+{b}^{2}}}$=$\sqrt{\frac{(a+b)^{2}}{{a}^{2}+{b}^{2}}}$
=$\sqrt{1+\frac{2ab}{{a}^{2}+{b}^{2}}}$≤$\sqrt{1+\frac{2ab}{2ab}}$=$\sqrt{2}$.
当且仅当a=b,取得等号.
则有$\frac{a+b}{c}$的最大值为$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题考查双曲线的方程和性质,同时考查重要不等式的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{12}$ | C. | $\frac{1}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com