精英家教网 > 高中数学 > 题目详情
8.若P(x,y)∈$\left\{\begin{array}{l}{0≤x≤3}\\{0≤y≤4}\\{4x+3y-12≤0}\end{array}\right.$,则事件P(x,y)∈{(x,y)|(x-1)2+(y-1)2≤1}的概率是(  )
A.$\frac{π}{6}$B.$\frac{π}{12}$C.$\frac{1}{2}$D.$\frac{π}{4}$

分析 $\left\{\begin{array}{l}{0≤x≤3}\\{0≤y≤4}\\{4x+3y-12≤0}\end{array}\right.$表示直角三角形,{(x,y)|(x-1)2+(y-1)2≤1},表示以(1,1)为圆心,1为半径的圆面,求出相应的面积,即可求出概率.

解答 解:$\left\{\begin{array}{l}{0≤x≤3}\\{0≤y≤4}\\{4x+3y-12≤0}\end{array}\right.$表示直角三角形,其面积为$\frac{1}{2}×3×4$=6,
{(x,y)|(x-1)2+(y-1)2≤1},表示以(1,1)为圆心,1为半径的圆面,其面积为π,
所以所求概率为$\frac{π}{6}$,
故选:A.

点评 本题考查概率的计算,考查面积的求解,正确求出面积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.($\frac{1}{2}$x-2y)5的展开式中x2y3的系数是(  )
A.5B.-5C.20D.-20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线C:$\frac{x^2}{16}+\frac{y^2}{12}$=1,直线l:$\left\{\begin{array}{l}x=2-\frac{{2\sqrt{5}}}{5}t\\ y=2+\frac{{\sqrt{5}}}{5}t\end{array}$(t为参数)
( I)写出曲线a,b的参数方程,直线2a+3b=6的普通方程;
(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值及取得最大值时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,已知Rt△ABC中,点O为斜边BC的中点,且AB=8,AC=6,点E为边AC上一点,且$\overrightarrow{AE}=λ\overrightarrow{AC}$,若$\overrightarrow{AO}•\overrightarrow{BE}=-20$,则λ=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.△ABC中,点M在线段AC上,点P在线段BM上,且满足$\frac{AM}{MC}=\frac{MP}{PB}$=2,若$|{\overrightarrow{AB}}|=2,|{\overrightarrow{AC}}|=3,∠BAC={90°}$,则$\overrightarrow{AP}•\overrightarrow{BC}$的值为$-\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.当m=6,n=3时,执行如图所示的程序框图,输出的S值为(  )
A.6B.30C.120D.360

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系xoy中,设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2c(c>0),当a,b任意变化时,$\frac{a+b}{c}$的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,长方体ABCD-A1B1C1D1中,AB=2,AD=AA1=$\sqrt{2}$.设长方体的截面四边形ABC1D1的内切圆为O,圆O的正视图是椭圆O',则椭圆O'的离心率等于(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.阅读如图所示的程序框图,运行相应的程序,输出的结果是(  )
A.3B.9C.27D.81

查看答案和解析>>

同步练习册答案