精英家教网 > 高中数学 > 题目详情
17.已知变量x、y满足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,则u=$\frac{3x+y}{x+1}$的取值范围是[$\frac{5}{2},\frac{14}{5}$].

分析 令x+1=m,3x+y=n,代入约束条件后转化关于m,n的不等式组,数形结合得到最优解,求出最优解的坐标,由$\frac{n}{m}$的几何意义得答案.

解答 解:令x+1=m,3x+y=n,得x=m-1,y=n-3m+3,代入$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,
得$\left\{\begin{array}{l}{4m-n-6≤0}\\{5m-2n≤0}\\{3m-n-1≥0}\end{array}\right.$,作出可行域如图,

联立$\left\{\begin{array}{l}{3m-n-1=0}\\{4m-n-6=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{m=5}\\{n=14}\end{array}\right.$,即C(5,14),
u=$\frac{3x+y}{x+1}$=$\frac{n}{m}$的几何意义为可行域内的动点与原点连线的斜率,
∵${k}_{OA}={k}_{AB}=\frac{5}{2}$,${k}_{OC}=\frac{14}{5}$,
∴u=$\frac{3x+y}{x+1}$的取值范围是[$\frac{5}{2},\frac{14}{5}$].
故答案为:[$\frac{5}{2},\frac{14}{5}$].

点评 本题考查了简单的线性规划,考查了数形结合及数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知椭圆mx2+4y2=1的离心率为$\frac{{\sqrt{2}}}{2}$,则实数m等于(  )
A.2B.2或$\frac{8}{3}$C.2或6D.2或8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知命题p:?x∈R,x2+ax+a<0.若¬p是真命题,则实数a的取值范围是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合U={1,2,3,4,5,6},A={x∈N|1≤x≤3},则∁UA=(  )
A.UB.{1,2,3}C.{4,5,6}D.{1,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系xOy中,点A(-1,0),$B(\;0\;,\;\sqrt{3}\;)$,C(cosx,sinx),则$\overrightarrow{AB}$=$(1,\sqrt{3})$;若$\overrightarrow{AB}$∥$\overrightarrow{OC}$,则tanx=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ x-2y≤3\end{array}$,若z=2x+y的最大值和最小值分别为a,b,则a+b=(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,平面PBA⊥平面ABCD,∠DAB=90°,PB=AB,BF⊥PA,点E在线段AD上移动.
(Ⅰ)当点E为AD的中点时,求证:EF∥平面PBD;
(Ⅱ)求证:无论点E在线段AD的何处,总有PE⊥BF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.△ABC中,$\sqrt{5}$sin2A-(2$\sqrt{5}$+1)sinA+2=0,A是锐角.
(1)求tan2A的值;
(2)若cosB=$\frac{3\sqrt{10}}{10}$,c=10,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)是定义在R上的奇函数,且f(x-2)=f(x+2),当0<x<2时,f(x)=1-log2(x+1),则当0<x<4时,不等式(x-2)f(x)>0的解集是(  )
A.(0,1)∪(2,3)B.(0,1)∪(3,4)C.(1,2)∪(3,4)D.(1,2)∪(2,3)

查看答案和解析>>

同步练习册答案