精英家教网 > 高中数学 > 题目详情
已知不等式|t+3|-|t-2|≤6m-m2对任意t∈R恒成立.
(Ⅰ)求实数m的取值范围;
(Ⅱ)若(Ⅰ)中实数m的最大值为λ,且3x+4y+5z=λ,其中x,y,z∈R,求x2+y2+z2的最小值.
考点:二维形式的柯西不等式,绝对值不等式的解法
专题:不等式的解法及应用
分析:(Ⅰ)由条件利用绝对值三角不等式求得|t+3|-|t-2|的最大值,可得6m-m2≥5,由此求得实数m的取值范围
(Ⅱ)由题意可得 λ=5,3x+4y+5z=5,再根据(x2+y2+z2)(32+42+52)≥25,求得x2+y2+z2的最小值.
解答: 解:(Ⅰ)∵|t+3|-|t-2|≤|(t+3)-(t-2)|=5,不等式|t+3|-|t-2|≤6m-m2对任意t∈R恒成立,
可得6m-m2≥5,求得1≤m≤5,或m≥5,即实数m的取值范围为{m|1≤m≤5}.
(Ⅱ)由题意可得 λ=5,3x+4y+5z=5.
∵(x2+y2+z2)(32+42+52)≥(3x+4y+5z)2=25,当期仅当
x
3
=
y
4
=
z
5
时,等号成立,
即x=
3
10
,y=
2
5
,z=
1
2
 时,取等号.
∴50(x2+y2+z2)≥25,∴x2+y2+z2
1
2
,即x2+y2+z2的最小值为
1
2
点评:本题主要考查绝对值三角不等式,柯西不等式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆
x2
4
+
y2
k
=1的焦距是2,那么椭圆的长轴长为(  )
A、2或2
5
B、2或2
2
C、4或2
5
D、4或2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面是边长2的正三角形,侧棱与底面垂直,且长为
3
,D是AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求点A到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设矩阵A=
.
53
-20
.
,若存在一矩阵P=
.
-13
1-2
.
使得A=PBP-1.试求:
(Ⅰ)矩阵B; 
(Ⅱ)B3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知扇形的圆心角为90°,弧长为l,求此扇形内切圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项,若bn=log2an+1
(1)求数列{bn}的通项公式;
(2)若数列{cn}满足cn=an+1+
1
b2n-1•b2n+1
,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}对任意n∈N*都有(kn+b)(a1+an)+p=2(a1+a2+…+an)(其中k、b、p是常数).
(Ⅰ)当k=0,b=3,p=-4时,求a1+a2+…+an
(Ⅱ)当k=1,b=0,p=0时,若a3=3,a9=15,求数列{an}的通项公式;
(Ⅲ)当k=1,b=0,p=0时,若数列{an}中任意(不同)两项之和仍是该数列中的一项,且a2-a1=2.Sn是数列{an}的前n项和,满足
1
6
1
S1
+
1
S2
+…+
1
Sn
11
18
,求数列{an}首项a1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,AB=PA=1,AD=
3
,F是PB中点,E为BC上一点.
(Ⅰ)求证:AF⊥平面PBC;
(Ⅱ)当BE为何值时,二面角C-PE-D为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
3
-tanx
lg(tanx-1)
的定义域是
 

查看答案和解析>>

同步练习册答案