精英家教网 > 高中数学 > 题目详情
7.命题“?x0∈(0,$\frac{π}{2}$),cosx0>sinx0”的否定是(  )
A.?x0∈(0,$\frac{π}{2}$),cosx0≤sinx0B.?x∈(0,$\frac{π}{2}$),cosx≤sinx
C.?x∈(0,$\frac{π}{2}$),cosx>sinxD.?x0∉(0,$\frac{π}{2}$),cosx0>sinx0

分析 根据特称命题的否定是全称命题进行判断即可.

解答 解:命题是特称命题,则命题的否定是全称命题,
则命题的否定是?x∈(0,$\frac{π}{2}$),cosx≤sinx,
故选:B.

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若点(a,9)在函数y=3x的图象上,则y=loga(x2+2x+5)的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若实数ai(i=1,2,3,…,2015)满足:a1+a2+a3+…+a2015=0,且|a1-2a2|=|a2-2a3|=…=|a2014-2a2015|=|a2015-2a1|,证明:对任意i=1,2,3,…,2015,有ai=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设U=R,集合M={-1,1,2},N={x|-1<x<2},则N∩M=(  )
A.{-1,2}B.{1}C.{2}D.{-1,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一空间几何体的三视图如图所示,该几何体的体积为12π+$\frac{8\sqrt{5}}{3}$,则正视图与侧视图中x的值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC的内角A,B,C所对的边分别为a,b,c,sinB+sinA=$\frac{\sqrt{3}(sin2A-sin2B)}{2(sinB-sinA)}$.
(Ⅰ)求角C;
(Ⅱ)若△ABC的三个内角满足mtanAtanB=tanC(tanA+tanB),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.甲、乙、丙、丁四位同学准备游览A,B,C三个景点.每人只能去一个地方,B景点一定要有人去,则不同的游览方案有65种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=ax-bx2,a>0,b>1.求证:|f(x)|≤1对任意x∈[0,1]恒成立的充要条件是b-1≤a≤2$\sqrt{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.平行四边形ABCD中,AB=$\sqrt{13}$,BC=$\sqrt{5}$,BD=4,AC,BD交于O,将△ABD沿BD折起至△A′BD,使得A′C⊥CB.
(1)求证:A′C⊥平面A′AD;
(2)求二面角A′-BD-C的余弦值.

查看答案和解析>>

同步练习册答案