精英家教网 > 高中数学 > 题目详情
16.设函数f(x)=ax-bx2,a>0,b>1.求证:|f(x)|≤1对任意x∈[0,1]恒成立的充要条件是b-1≤a≤2$\sqrt{b}$.

分析 必要性:对任意x∈[0,1],|f(x)|≤1⇒f(x)≥-1.取x=1,可得a≥b-1.对任意x∈[0,1],|f(x)|≤1⇒f(x)≤1,由b>1,可得0<$\frac{1}{\sqrt{b}}$<1,利用$f(\frac{1}{\sqrt{b}})$≤1,可得a≤2$\sqrt{b}$,即可证明.
充分性:由b>1,a≥b-1,对任意x∈[0,1],可以推出ax-bx2≥b(x-x2)-x≥-x≥-1.由b>1,a≤2$\sqrt{b}$对任意x∈[0,1],可以推出:2$\sqrt{b}$x-bx2≤-b$(x-\frac{1}{\sqrt{b}})^{2}$+1≤1,即可证明-1≤f(x)≤1.

解答 证明:必要性:对任意x∈[0,1],|f(x)|≤1⇒f(x)≥-1.
据此可推出f(1)≥-1,即a-b≥-1,
∴a≥b-1.
对任意x∈[0,1],|f(x)|≤1⇒f(x)≤1,
因为b>1,可得0<$\frac{1}{\sqrt{b}}$<1,可推出$f(\frac{1}{\sqrt{b}})$≤1,即a•$\frac{1}{\sqrt{b}}$-1≤1,
∴a≤2$\sqrt{b}$,
∴b-1≤a≤2$\sqrt{b}$.
充分性:因为b>1,a≥b-1,对任意x∈[0,1],
可以推出ax-bx2≥b(x-x2)-x≥-x≥-1,即ax-bx2≥-1,
因为b>1,a≤2$\sqrt{b}$对任意x∈[0,1],
可以推出:2$\sqrt{b}$x-bx2≤-b$(x-\frac{1}{\sqrt{b}})^{2}$+1≤1,即ax-bx2≤1,
∴-1≤f(x)≤1.
综上,当b>1时,对任意x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤2$\sqrt{b}$.

点评 本题考查了不等式的解法及其性质、二次函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知O为坐标原点,P(x,y)为函数y=1+lnx图象上一点,记直线OP的斜率k=f(x).
(1)若函数f(x)在区间$(m,m+\frac{1}{2})(m>0)$上存在极值,求实数m的取值范围;
(2)?x∈[1,+∞),使$f(x)≤\frac{t}{x+1}$,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题“?x0∈(0,$\frac{π}{2}$),cosx0>sinx0”的否定是(  )
A.?x0∈(0,$\frac{π}{2}$),cosx0≤sinx0B.?x∈(0,$\frac{π}{2}$),cosx≤sinx
C.?x∈(0,$\frac{π}{2}$),cosx>sinxD.?x0∉(0,$\frac{π}{2}$),cosx0>sinx0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.平行四边形ABCD三个顶点A、B、C的坐标分别为(-5,12)、(0,0)、(3,4),直线l交BA于点E,交BC的延长线于F,△BEF是以EF为底边的等腰三角形,如果直线l平分平行四边形ABCD的面积,试求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设点(x,y)满足y≥|x|且y≤-|x|+2,则z=6x-y的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足约束条件$\left\{\begin{array}{l}2x-y-1≤0\\ x-y+1≥0\\ x≥0,y≥0\end{array}\right.$,若z=ax+by(a>0,b>0)的最大值为1,则$\frac{1}{2a}+\frac{1}{3b}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若(x2-a)(x+$\frac{1}{x}$)10的展开式x6的系数为30,则a等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,设边a,b,c所对的角为A,B,C,且A,B,C都不是直角,(bc-8)cosA+accosB=a2-b2
(Ⅰ)若b+c=5,求b,c的值;
(Ⅱ)若$a=\sqrt{5}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点A(-2,2)在直线l:mx-y-2m-4=0上的射影为H,点B(3,3),则|$\overline{BH}$|的取值范围是$[5-\sqrt{13},5+\sqrt{13}]$.

查看答案和解析>>

同步练习册答案