精英家教网 > 高中数学 > 题目详情
永昌同人商厦国贸购物中心于国庆盛大开业.假如在该商场付款处排队等候付款的人数及概率如下表:
排队人数012345人以上
概率0.10.160.30.30.10.04
(Ⅰ)至多有2人排队的概率是多少?
(Ⅱ)至少有2人排队的概率是多少?
考点:等可能事件的概率
专题:计算题,概率与统计
分析:(Ⅰ)“至多2人排队”是“没有人排队”,“1人排队”,“2人排队”三个事件的和事件,三个事件彼此互斥,利用互斥事件的概率公式求出至多2人排队的概率.
(Ⅱ)“至少2人排队”与“少于2人排队”是对立事件;“少于2人排队”是“没有人排队”,“1人排队”二个事件的和事件,二个事件彼此互斥,利用互斥事件的概率公式求出“少于2人排队”的概率;再利用对立事件的概率公式求出)“至少2人排队”的概率.
解答: 解:(Ⅰ)记没有人排队为事件A,1人排队为事件B.2人排队为事件C,A、B、C彼此互斥.
P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56;
(Ⅱ)记至少2人排队为事件D,少于2人排队为事件A+B,那么事件D与A+B是对立事件,
则P(D)=P(
.
A+B
)=1-(P(A)+P(B))=1-(0.1+0.16)=0.74.
点评:本题考查互斥事件的概率公式、考查对立事件的概率公式.考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

储油30m3的油桶,每分钟流出
3
4
m3的油,则桶内剩余油量Q(m3)以流出时间t(分)为自变量的函数的定义域为(  )
A、[0,+∞)
B、[0,
45
2
]
C、(-∞,40]
D、[0,40]

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线2x+3y+a=0与两坐标轴围成的三角形的面积为12,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
1
2
,椭圆上点到直线l:x=4的最短距离为2.
(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦,P是直线l上的任意点,记PA,PF,PB的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k3=λk2?若存在,求λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=a1b1+a2b2+…+anbn,n∈N*,求Tn(n∈N*,n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
2
(ax+a-x)(a>0,a≠1)的图象经过点(2,
41
9
).
(1)求函数f(x)的解析式; 
(2)若函数f(x)的值域为[1,
5
3
],试确定x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了增强中学生的法律意识,某中学高三年级组织了普法知识竞赛.并随机抽取了A、B两个班中各5名学生的成绩,成绩如下表所示:
A班8788919193
B班8589919293
(1)根据表中的数据,分别求出A、B两个班成绩的平均数和方差,并判断对法律知识的掌握哪个班更为稳定?
(2)用简单随机抽样方法从B班5名学生中抽取2名,他们的成绩组成一个样本,求抽取的2名学生的分数差值至少是4分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5},若∁RB?A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=ln(1+ax)-
ax
ax+1
的单调性.

查看答案和解析>>

同步练习册答案