精英家教网 > 高中数学 > 题目详情
函数f(x)=
1
2
(ax+a-x)(a>0,a≠1)的图象经过点(2,
41
9
).
(1)求函数f(x)的解析式; 
(2)若函数f(x)的值域为[1,
5
3
],试确定x的取值范围.
考点:函数的值域,函数解析式的求解及常用方法
专题:函数的性质及应用
分析:(1)把点(2,
41
9
)代入解析式,利用整体思想和a的范围求出a的值,即求出函数的解析式;
(2)由(1)和题意得,1≤
1
2
(3x+3-x)≤
5
3
,根据指数函数的性质求出x的范围.
解答: 解:(1)因为函数f(x)的图象经过点(2,
41
9
),
所以
1
2
(a2+a-2)=
41
9
,即9a4-82a2+9=0,
解得a2=
1
9
或a2=9,
又a>0,a≠1,所以a=3,或a=
1
3

当a=3时,f(x)=
1
2
(3x+3-x)
,…(4分)
a=
1
3
时,f(x)=
1
2
[(
1
3
)x+(
1
3
)-x]
=
1
2
(3x+3-x)

所以f(x)的解析式为f(x)=
1
2
(3x+3-x)
…(6分)
(2)由函数的值域为[1,
5
3
]
得,则1≤
1
2
(3x+3-x)≤
5
3

3x+3-x≥2
3x+3-x
10
3
(3x-1)2≥0
1
3
3x≤3
⇒-1≤x≤1

所以当函数的值域为[1,
5
3
]
,x的取值范围为[-1,1]…(12分)
点评:本题考查待定系数法求函数的解析式,函数的值域,以及指数函数的性质应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数在区间(0,3)内是增函数的是(  )
A、y=
1
x
B、y=x 
1
2
C、y=(
1
3
x
D、y=log 
1
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在[-2,2]上的奇函数f(x)在区间[-2,2]上单调递减,若f(1-m)+f(-m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a3=2,a7=1,若{
1
an+1
}为等差数列,求a11的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

永昌同人商厦国贸购物中心于国庆盛大开业.假如在该商场付款处排队等候付款的人数及概率如下表:
排队人数012345人以上
概率0.10.160.30.30.10.04
(Ⅰ)至多有2人排队的概率是多少?
(Ⅱ)至少有2人排队的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明:PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)求三棱锥P-ACD外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程ax2+2x+c=0(a、c∈N+)有实数根.
(1)求f(x)=ax2+2x+c的解析式;
(2)若x∈[-2,2],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)=
1(x=1)
1
|x-1|
(x≠1)
,若关于x的函数h(x)=f2(x)+bf(x)+
1
2
有5个不同的零点x1,x2,x3,x4,x5,求x12+x22+x32+x42+x52的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1+sinx+cosx+2sinxcosx
1+sinx+cosx

(1)化简f(x);
(2)当x∈[0,π]时,求f(x)的最大值,并求此时x的值.

查看答案和解析>>

同步练习册答案