精英家教网 > 高中数学 > 题目详情
定义域为R的函数f(x)=
1(x=1)
1
|x-1|
(x≠1)
,若关于x的函数h(x)=f2(x)+bf(x)+
1
2
有5个不同的零点x1,x2,x3,x4,x5,求x12+x22+x32+x42+x52的值.
考点:函数与方程的综合运用,数列的求和
专题:函数的性质及应用
分析:根据函数f(x)=
1(x=1)
1
|x-1|
(x≠1)
的表达式可对x分x=1与x≠1讨论,由方程f2(x)+bf(x)+
1
2
=0分别求得x1、x2、x3、x4、x5,从而可求得则x12+x22+x32+x42+x52的值.
解答: 解:①若x=1,f(x)=1,故12+b+
1
2
=0,b=-
3
2

②若x≠1,f(x)=
1
|1-x|
,方程f2(x)+bf(x)+
1
2
=0可化为:(
1
|1-x|
2-
3
2
1
|1-x|
+
1
2
=0,
即(
1
|1-x|
-1)•(2•
1
|1-x|
-1)=0,
1
|1-x|
=1或
1
|1-x|
=
1
2

1
|1-x|
=1得:x=0或x=2;解
1
|1-x|
=
1
2
得:x=-1或x=3;
∴x12+x22+x32+x42+x52=12+02+22+(-1)2+32=15.
∴x12+x22+x32+x42+x52=15
点评:本题考查函数与方程的综合应用,根的存在性及根的个数判断,关键是通过对x分x=1与x≠1讨论,由方程f2(x)+bf(x)+
1
2
=0分别求得x1、x2、x3、x4、x5
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|-1≤x≤3},集合B={x|m-2≤x≤m+2}.
(1)若B⊆A,求m值;
(2)若A⊆∁RB,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
2
(ax+a-x)(a>0,a≠1)的图象经过点(2,
41
9
).
(1)求函数f(x)的解析式; 
(2)若函数f(x)的值域为[1,
5
3
],试确定x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+
y2
3
=1的长轴为线段AB,点M是椭圆上不同于A,B的任意一点,
(1)设直线MA,MB的斜率分别为k1,k2,求证:k1k2为定值;
(2)若直线MA,MB与直线x=3分别相交于C,D两点,求证:以CD为直径的圆过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5},若∁RB?A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设含有三个实数的集合可表示为{a,a+b,a+2b},也可表示为{a,aq,aq2},其中a,b,q∈R,求常数项q.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.
(1)若A⊆B,求a;
(2)若B⊆A,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x≤7},集合B={x|x<2},集合C={x|x>5},求A∩(B∩C).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,作斜率为-
1
4
的直线l与抛物线D:2y2=x相交于不同的两点B、C,点A(2,1)在直线l的右上方.
(1)求证:△ABC的内心在直线x=2上;
(2)若∠BAC=90°,求△ABC内切圆的半径.

查看答案和解析>>

同步练习册答案