精英家教网 > 高中数学 > 题目详情
设含有三个实数的集合可表示为{a,a+b,a+2b},也可表示为{a,aq,aq2},其中a,b,q∈R,求常数项q.
考点:集合的相等
专题:集合
分析:由两个集合相等列方程组,分别求得q的值,验证集合中元素的特性后得答案.
解答: 解:∵{a,a+b,a+2b}={a,aq,aq2},
a+b=aq
a+2b=aq2
①或
a+b=aq2
a+2b=aq

解①得:q=1;
解②得:q=1或q=-
1
2

当q=1时集合{a,aq,aq2}违背互异性,
故q=-
1
2
点评:本题考查了集合相等的概念,考查了集合中元素的特性,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A(-2,2),B(-3,-1),试在直线l:2x-y-1=0上求一点P,使得|PA|2+|PB|2最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明:PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)求三棱锥P-ACD外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于两个定义域相同的函数f(x)、g(x),若存在实数m,n使得h(x)=mf(x)+ng(x),则称函数h(x)是“函数f(x),g(x)的一个线性表达”.
(1)若h(x)=2x2+3x-1是“函数f(x)=x2+ax,g(x)=x+b(a,b∈R,ab≠0)的一个线性表达”,求a+2b的取值范围;
(2)若函数h(x)是“函数f(x)=log4(4x+1),g(x)=x-1的一个线性表达”且满足:①h(x)是偶函数;②g(x)的最小值是1,求h(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)=
1(x=1)
1
|x-1|
(x≠1)
,若关于x的函数h(x)=f2(x)+bf(x)+
1
2
有5个不同的零点x1,x2,x3,x4,x5,求x12+x22+x32+x42+x52的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-2|-|x-5|.
(Ⅰ)证明:|f(x)|≤3;
(Ⅱ)若函数g(x)=f(x)-logax(a>0且a≠1)有两个零点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2-5x+6=0},B={x|x2-(2a+1)x+a2+a=0},若B⊆A,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分每立方米收费1.5元,并加收0.4元的城市污水处理费.
(1)写出每月用水量x(m3)与应缴纳水费y(元)之间的函数解析式;
(2)设计一个求该函数值的算法;
(3)画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,a2=b(a、b、n∈N+),an=|an-1-an-2|,n≥3
(1)若a=6,b=5,求a5、a7的值;
(2)是否存在正整数m,使得?a、b∈N+,都有an≥an+m成立?若存在,给出一个m的值,并证明你的结论,若不存在,说明理由;
(3)证明{an}中有无穷多个为零的项.

查看答案和解析>>

同步练习册答案