精英家教网 > 高中数学 > 题目详情
为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分每立方米收费1.5元,并加收0.4元的城市污水处理费.
(1)写出每月用水量x(m3)与应缴纳水费y(元)之间的函数解析式;
(2)设计一个求该函数值的算法;
(3)画出程序框图.
考点:程序框图,函数解析式的求解及常用方法
专题:算法和程序框图
分析:(1)设某户每月用水量为x(立方米),应交水费为y(元)所以未超出7立方米时:y=x×(1+0.2);超出7立方米时:y=7×1.2+(x-7)×(1.5+0.4).
(2)该函数是分段函数,当x取不同范围内的值时,函数解析式不同,因此当给出一个自变量x的值时,必须先判断x 的范围,然后确定利用哪一段的解析式求函数值,由此求出算法.
(3)根据算法,画出程序框图.
解答: 解:(1)未超出7立方米时:
y=x×(1+0.2)=1.2x;
超出7立方米时:
y=7×1.2+(x-7)×(1.5+0.4)=1.9x-4.9,
∴y=
y=1.2x,x≤7
y=1.9x-4.9,x>7

(2)该函数是分段函数,当x取不同范围内的值时,
函数解析式不同,
因此当给出一个自变量x的值时,
必须先判断x 的范围,
然后确定利用哪一段的解析式求函数值,
算法如下:
第一步,输入x;
第二步,如果x≤7,那么y=1.2x,
否则如果x>7,那么y=1.9x-4.9.
(3)程序框图如图所示:
点评:本题考查的知识点是设计程序框图实际问题,编写程序解决分段函数问题,要分如下几个步骤:①对题目的所给的条件的分类进行总结,写出分段函数的解析式;②根据分类标准,设置判断框的个数及判断框中的条件;③分析函数各段的解析式,确定判断框的“是”与“否”分支对应的操作;④画出流程图,再编写满足题意的程序.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是梯形},求A∩B,A∪B,A∩C,A∪C.

查看答案和解析>>

科目:高中数学 来源: 题型:

设含有三个实数的集合可表示为{a,a+b,a+2b},也可表示为{a,aq,aq2},其中a,b,q∈R,求常数项q.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(Ⅰ)证明:CB=DA;
(Ⅱ)若∠AEB=60°且D是AE的中点,证明:AB是该圆的直径.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x≤7},集合B={x|x<2},集合C={x|x>5},求A∩(B∩C).

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高中三个年级的在校学生人数情况如表:
性别
年级
高一年级高二年级高三年级
110150z
290450600
按年级采用分层抽样的方法从在校学生中抽取50人,其中高一年级有10人.
(1)求z的值;
(2)按性别采用分层抽样的方法从高三年级中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1个女同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=n2(n∈N*).
(1)求an
(2)设函数f(n)=
an,n为奇数
f(
n
2
),n为偶数
,cn=f(2n+4)(n∈N*),求数列{cn}的前n项和Tn
(3)设λ为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>λ•Sk恒成立,试求实数λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式kx2-2x+6k<0(k≠0),若不等式的解集是{x|x≠
1
k
},求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2-(a+2)x+2a=0},集合B={x|x2-4x+3=0},求A∪B,A∩B.

查看答案和解析>>

同步练习册答案