精英家教网 > 高中数学 > 题目详情
设集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是梯形},求A∩B,A∪B,A∩C,A∪C.
考点:交集及其运算,并集及其运算
专题:集合
分析:利用集合的交集、交集的定义和四边形的性质与分类求解.
解答: 解:∵集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是梯形},
∴A∩B={x|x是矩形},
A∪B={x|x是平行四边形},
A∩C=∅,
A∪C={x|x是平行四边形或梯形}.
点评:本题考查集合的交集、并集的求法,是基础题,解题时要注意四边形的性质和分类的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=tan
3
5
x是(  )
A、周期为π的偶函数
B、周期为
5
3
π的奇函数
C、周期为
5
3
π的偶函数
D、周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-2,2),B(-3,-1),试在直线l:2x-y-1=0上求一点P,使得|PA|2+|PB|2最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x丨a-2<x<a+2},B={x丨(x-3)(x+2)<0},若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a3=2,a7=1,若{
1
an+1
}为等差数列,求a11的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从高二年级学生中随机抽取60名学生,将其会考的政治成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示频率分布直方图.
(Ⅰ)求图中a的值;
(Ⅱ)根据频率分布直方图,估计该校高二年级学生政治成绩的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明:PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)求三棱锥P-ACD外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于两个定义域相同的函数f(x)、g(x),若存在实数m,n使得h(x)=mf(x)+ng(x),则称函数h(x)是“函数f(x),g(x)的一个线性表达”.
(1)若h(x)=2x2+3x-1是“函数f(x)=x2+ax,g(x)=x+b(a,b∈R,ab≠0)的一个线性表达”,求a+2b的取值范围;
(2)若函数h(x)是“函数f(x)=log4(4x+1),g(x)=x-1的一个线性表达”且满足:①h(x)是偶函数;②g(x)的最小值是1,求h(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分每立方米收费1.5元,并加收0.4元的城市污水处理费.
(1)写出每月用水量x(m3)与应缴纳水费y(元)之间的函数解析式;
(2)设计一个求该函数值的算法;
(3)画出程序框图.

查看答案和解析>>

同步练习册答案