精英家教网 > 高中数学 > 题目详情
12.某工厂对某产品的产量与单位成本的资料分析后有如表数据:
月     份123456
产量x千件234345
单位成本y元/件737271736968
(1)画出散点图,并判断产量与单位成本是否线性相关.
(2)求单位成本y与月产量x之间的线性回归方程.(其中结果保留两位小数)
参考公式:
用最小二乘法求线性回归方程系数公式:$\widehatb$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{{{\sum_{i=1}^n{x_1^2-n\overline x}}^2}}}$,$\widehata$=$\overline y$-$\widehatb\overline$x.

分析 (1)根据所给的六组数据写出六个有序数对,在平面直角坐标系上点出对应的点,得到散点图,观察散点图呈带状分布,知产量与单位成本是线性相关.
(2)做出横标和纵标的平均数,得到这组数据的样本中心点,求出利用最小二乘法所需要的数据,代入关于b的公式,求出线性回归方程的系数,再求出a的值,得到方程.

解答 解:(1)根据所给的六组数据写出六个有序数对,在平面直角坐标系上点出对应的点,得到散点图,
观察散点图呈带状分布,知产量与单位成本是线性相关

(2)x1y1+x2y2+…+x6y6=1481,

$\overline x=\frac{21}{6},\overline y=71,\sum_{i=1}^6{x_i^2}=79,\sum_{i=1}^6{{x_i}{y_i}}=1481$,
代入公式得:$\widehat{b}$=$\frac{1481-6×\frac{21}{6}×71}{79-6{×(\frac{21}{6})}^{2}}$≈-1.82,
$\widehat{a}$=71-(-1.82)×$\frac{21}{6}$≈77.37,
故线性回归方程为:$\hat{y}$=77.37-1.82x.

点评 本题考查线性回归方程的求解,本题解题的关键是正确求解线性回归方程的系数,这里的运算比较麻烦,容易出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.9粒种子分种在3个坑中,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑内不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.
(1)求单个坑不需要补种的概率;
(2)用ξ表示需要补种的坑数,求ξ的分布列;
(3)假定每个坑至多补种一次,每补种1个坑需10元,用X表示补种的费用,求X的期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知角α的终边经过点(-3,4),则sin2α的值为(  )
A.-$\frac{7}{25}$B.-$\frac{18}{25}$C.-$\frac{12}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.f(x)=ln(x+$\sqrt{{x^2}+1}}$),若实数a,b满足f(a)+f(b-1)=0,则a+b为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{{5}^{x},x≥0}\\{f(-x),x<0}\end{array}$,则f(log5$\frac{1}{3}$)的值等于(  )
A.3B.$\frac{1}{3}$C.$\frac{1}{8}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某同学用“五点法”画函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}}$)在某一个周期内的图象时,列表如下:
x$\frac{2}{3}$πx1$\frac{8}{3}$πx2x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)020-20
(1)求函数f(x)的表达式;
(2)将函数f(x)的图象向左平移π个单位,可得到函数g(x)的图象,且函数y=f(x)•g(x)在区间(0,m)上是单调函数,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列结论正确的是(  )
A.命题p:?x>0,都有x2>0,则?p:?x0≤0,使得x02≤0
B.若命题p和p∨q都是真命题,则命题q也是真命题
C.在△ABC中,a,b,c是角A,B,C的对边,则a<b的充要条件是cosA>cosB
D.命题“若x2+x-2=0,则x=-2或x=1”的逆否命题是“x≠-2或x≠1,则x2+x-2≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在正方体ABCD-A1B1C1D1中,棱长AB=2,M,N,P分别是C1C,BC1,C1D1的中点.
(1)直线A1C1交PN于点E,直线AC1交平面MNP于点F,求证:M,E,F三点共线.
(2)求三棱锥D-MNP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线y2=ax的准线方程是x=-1,焦点为F.
(1)求a的值;
(2)过点F作直线交抛物线于A(x,y),B(x,y)两点,若x+x=6,求弦长AB.

查看答案和解析>>

同步练习册答案