17£®Ä³Í¬Ñ§Óá°Îåµã·¨¡±»­º¯Êýy=Asin£¨¦Øx+¦Õ£©£¨A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}}$£©ÔÚijһ¸öÖÜÆÚÄÚµÄͼÏóʱ£¬ÁбíÈçÏ£º
x$\frac{2}{3}$¦Ðx1$\frac{8}{3}$¦Ðx2x3
¦Øx+¦Õ0$\frac{¦Ð}{2}$¦Ð$\frac{3¦Ð}{2}$2¦Ð
Asin£¨¦Øx+¦Õ£©020-20
£¨1£©Çóº¯Êýf£¨x£©µÄ±í´ïʽ£»
£¨2£©½«º¯Êýf£¨x£©µÄͼÏóÏò×óÆ½ÒÆ¦Ð¸öµ¥Î»£¬¿ÉµÃµ½º¯Êýg£¨x£©µÄͼÏó£¬ÇÒº¯Êýy=f£¨x£©•g£¨x£©ÔÚÇø¼ä£¨0£¬m£©ÉÏÊǵ¥µ÷º¯Êý£¬ÇómµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓÉ$\frac{2}{3}$¦Ð¦Ø+¦Õ=0£¬$\frac{8}{3}$¦Ð¦Ø+¦Õ=¦Ð£¬¿É½âµÃ¦Ø£¬¦Õ£¬ÓÉAsin$\frac{¦Ð}{2}$=2£¬¿ÉµÃA£¬¼´¿ÉµÃ½âº¯Êýf£¨x£©µÄ±í´ïʽ£®
£¨2£©ÓÉͼÏóÆ½ÒÆ¿ÉÇóg£¨x£©£¬´Ó¶ø¿ÉÇóy=f£¨x£©•g£¨x£©=2sin£¨x-$\frac{2¦Ð}{3}$£©£¬ÓÉx¡Ê£¨0£¬m£©£¬¿ÉÇó-$\frac{2}{3}$¦Ð£¼x-$\frac{2}{3}$¦Ð£¼m-$\frac{2}{3}$¦Ð£¬ÓÉÌâÒâ¿ÉµÃ-$\frac{2}{3}$¦Ð£¼m-$\frac{2}{3}$¦Ð¡Ü-$\frac{¦Ð}{2}$£¬¼´¿É½âµÃmµÄ×î´óֵΪ$\frac{¦Ð}{6}$£®

½â´ð £¨±¾ÌâÂú·ÖΪ12·Ö£©
½â£º£¨1£©ÓÉ$\frac{2}{3}$¦Ð¦Ø+¦Õ=0£¬$\frac{8}{3}$¦Ð¦Ø+¦Õ=¦Ð£¬¿ÉµÃ£º¦Ø=$\frac{1}{2}$£¬¦Õ=-$\frac{¦Ð}{3}$£¬
ÓÉAsin$\frac{¦Ð}{2}$=2£¬¿ÉµÃ£ºA=2£¬
¹Êº¯Êýf£¨x£©µÄ±í´ïʽΪ£ºf£¨x£©=2sin£¨$\frac{1}{2}$x-$\frac{¦Ð}{3}$£©£¬¡­6·Ö
£¨2£©ÓÉͼÏóÆ½ÒÆ¿ÉÖª£ºg£¨x£©=2cos£¨$\frac{1}{2}$x-$\frac{¦Ð}{3}$£©£¬
ËùÒÔy=f£¨x£©•g£¨x£©=2¡Á2sin£¨$\frac{1}{2}$x-$\frac{¦Ð}{3}$£©cos£¨$\frac{1}{2}$x-$\frac{¦Ð}{3}$£©=2sin£¨x-$\frac{2¦Ð}{3}$£©£¬
ÒòΪx¡Ê£¨0£¬m£©£¬
ËùÒÔ£º-$\frac{2}{3}$¦Ð£¼x-$\frac{2}{3}$¦Ð£¼m-$\frac{2}{3}$¦Ð£¬ÒªÊ¹¸Ãº¯ÊýÔÚÇø¼ä£¨0£¬m£©ÉÏÊǵ¥µ÷º¯Êý£¬
Ôò-$\frac{2}{3}$¦Ð£¼m-$\frac{2}{3}$¦Ð¡Ü-$\frac{¦Ð}{2}$£¬
ËùÒÔ£º0£¼m¡Ü$\frac{¦Ð}{6}$£¬
ËùÒÔmµÄ×î´óֵΪ$\frac{¦Ð}{6}$£®¡­12·Ö

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˺¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬Èý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Ó㬿¼²éÁËÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖʵÄÓ¦Ó㬿¼²éÁËת»¯Ë¼ÏëºÍÊýÐνáºÏ˼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖª¼¯ºÏA={x|x2-4x£¾0}£¬B={x|x£¾1}£¬Ôò£¨∁RA£©¡ÉB=£¨¡¡¡¡£©
A£®{x|x£¾4»òx£¼0}B£®{x|1£¼x£¼4}C£®{x|1£¼x¡Ü4}D£®{x|1¡Üx¡Ü4}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Ä³Ð¡×éÓÐA¡¢B¡¢C¡¢D¡¢E¡¢FÁùλͬѧ£¬ÆäÖÐA¡¢B¡¢C¡¢DËÄλͬѧ³É¼¨½ÏºÃ£¬E¡¢FÁ½Î»Í¬Ñ§³É¼¨½ÏÈõ£®
£¨1£©Ä³´Î»î¶¯ÉÏ£¬¾ö¶¨ÓÉÁ½Î»³É¼¨½ÏºÃµÄͬѧºÍһλ³É¼¨½Ï²îµÄͬѧ×é¶Ó²Î¼Ó£¬ÔòAºÍB²»¶¼È¥²Î¼ÓµÄ¸ÅÂÊ£»
£¨2£©Ò»´Îѧϰ¾ºÈüÖУ¬¹æ¶¨Ã¿Ð¡×éÏÈͨ¹ý³éÇ©·½Ê½½«6ÈËÅÅÐò£¬²¢°´Ë³ÐòÒÀ´Î³ö³¡²ÎÈü£¬Ã¿´Î³ö³¡1ÈË£¬½â´ðÒ»¸öÎÊÌ⣬ÒÑÖª4λ³É¼¨½ÏºÃµÄͬѧ¿ÉÒÔ½â´ð³öÈÎÒâÒ»¸öÌâÄ¿£¬¶ø³É¼¨½ÏÈõµÄͬѧÎÞ·¨ÍêÕû½â´ð³öÿһ¸öÌâÄ¿£¬Ò»µ©³öÏÖ½â´ð²»ÍêÕûÇé¿ö£¬¸Ã×é´ðÌâ¼´Í£Ö¹£¬ÓÃX´ú±í¸Ã×é³ö³¡²ÎÈüµÄÈËÊý£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍûEX£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®¸´Êýi+$\frac{2}{1-i}$£¨iΪÐéÊýµ¥Î»£©µÄʵ²¿Îª£¨¡¡¡¡£©
A£®-1B£®1C£®2D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ä³¹¤³§¶Ôij²úÆ·µÄ²úÁ¿Ó뵥λ³É±¾µÄ×ÊÁÏ·ÖÎöºóÓÐÈç±íÊý¾Ý£º
Ô     ·Ý123456
²úÁ¿xǧ¼þ234345
µ¥Î»³É±¾yÔª/¼þ737271736968
£¨1£©»­³öÉ¢µãͼ£¬²¢ÅжϲúÁ¿Ó뵥λ³É±¾ÊÇ·ñÏßÐÔÏà¹Ø£®
£¨2£©Çóµ¥Î»³É±¾yÓëÔ²úÁ¿xÖ®¼äµÄÏßÐԻع鷽³Ì£®£¨ÆäÖнá¹û±£ÁôÁ½Î»Ð¡Êý£©
²Î¿¼¹«Ê½£º
ÓÃ×îС¶þ³Ë·¨ÇóÏßÐԻع鷽³ÌϵÊý¹«Ê½£º$\widehatb$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{{{\sum_{i=1}^n{x_1^2-n\overline x}}^2}}}$£¬$\widehata$=$\overline y$-$\widehatb\overline$x£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÔ²CµÄÔ²ÐÄÊÇÖ±Ïß$\left\{\begin{array}{l}x=t\\ y=1+2t.\end{array}\right.$£¨tΪ²ÎÊý£©ÓëyÖáµÄ½»µã£¬ÇÒÔ²CÓëÖ±Ïßx+y-3=0ÏàÇУ¬ÔòÔ²CµÄ·½³ÌΪx2+£¨y-1£©2=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
¢ÙÉèËæ»ú±äÁ¿X·þ´Ó¶þÏî·Ö²¼B£¨6£¬$\frac{1}{2}$£©£¬ÔòP£¨X=3£©=$\frac{5}{16}$
¢ÚÒÑÖªËæ»ú±äÁ¿X·þ´ÓÕý̬·Ö²¼N£¨2£¬¦Ò2£©ÇÒP£¨X£¼4£©=0.9£¬ÔòP£¨0£¼X£¼2£©=0.4
¢Û$\int_{-1}^0$${\sqrt{1-{x^2}}$dx}=$\int_0^1$${\sqrt{1-{x^2}}$dx=$\frac{¦Ð}{4}$
¢ÜE£¨2X+3£©=2E£¨X£©+3£»D£¨2X+3£©=2D£¨X£©+3£®
A£®¢Ù¢Ú¢ÛB£®¢Ú¢Û¢ÜC£®¢Ú¢ÛD£®¢Ù¢Û

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¨1£©Ëùʾ£¬ÒÑÖª¾ØÐÎABCD£¬AB=2AD=2a£¬EÊÇCD±ßµÄÖе㣬ÒÔAEΪÀ⣬½«¡÷DAEÏòÉÏÕÛÆð£¬½«D ÕÛµ½D¡äµÄλÖã¬Ê¹Æ½ÃæD¡äAEÓëÆ½ÃæABCE³ÉÖ±¶þÃæ½ÇÈçͼ£¨2£©Ëùʾ£®
£¨1£©ÇóÖ±ÏßD¡äBÓëÆ½ÃæABCEËù³ÉµÄ½ÇµÄÕýÇÐÖµ£»
£¨2£©ÇóËÄÀâ×¶D¡ä-ABCEµÄÌå»ý£»
£¨3£©ÇóÒìÃæÖ±ÏßAD¡äÓëBCËù³ÉµÄ½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ö±ÏßlÓëÅ×ÎïÏßy2=4x½»ÓÚA£¬BÁ½µã£¬ÇÒOA¡ÍOB£¬ÆäÖÐOÎª×ø±êÔ­µã£®
£¨1£©Ö±ÏßlÊÇ·ñ¹ý¶¨µã£¿Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨2£©Èô$|{AB}|=4\sqrt{10}$£¬Çó¡÷AOBµÄÍâ½ÓÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸