精英家教网 > 高中数学 > 题目详情
16.张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如表:
年龄 (岁)78910111213
身高 (cm)121128135141148154160
(Ⅰ)求身高y关于年龄x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{1}-\overline{x})({y}_{1}-\overline{y})}{\sum_{i=1}^{n}({x}_{1}-\overline{x})^{2}}$,$\overline{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

分析 (Ⅰ)首先根据表格与公式求得相关数据,然后代入线性回归方程求得$\widehat{a}$,由此求得线性回归方程;
(Ⅱ)将先15代入(Ⅰ)中的回归方程即可求得张三同学15岁时的身高.

解答 解:(Ⅰ)由题意得$\overline{x}$=$\frac{1}{7}$(7+8+9+10+11+12+13)=10,
$\overline{y}$=$\frac{1}{7}$(121+128+135+141+148+154+160)=141,
$\sum_{i=1}^{7}$(${{(x}_{i}-\overline{x})}^{2}$=9+4+1+0+1+4+9=28,
$\sum_{i=1}^{7}$(xi-$\overline{x}$)(yi-$\overline{y}$)=(-3)×(-20)+(-2)×(-13)+(-1)×(-6)+0×0+1×7+2×13+3×19=182,
所以$\widehat{b}$=$\frac{182}{28}$=$\frac{13}{2}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=141-$\frac{13}{2}$×10=76,
所求回归方程为$\widehat{y}$=$\frac{13}{2}$x+76.
(Ⅱ)由(Ⅰ)知,$\widehat{b}$=$\frac{13}{2}$>0,
故张三同学7岁至13岁的身高每年都在增高,平均每年增高6.5cm.
将x=15代入(Ⅰ)中的回归方程,得$\widehat{y}$=$\frac{13}{2}$×15+76=173.5,
故预测张三同学15岁的身高为173.5cm.

点评 本题考查了求线性回归方程问题,考查计算能力,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2acos2x+bsinxcosx-$\frac{\sqrt{3}}{2}$,且f(0)=$\frac{\sqrt{3}}{2}$,f($\frac{π}{4}$)=$\frac{1}{2}$,
(1)求a、b的值;
(2)化简函数f(x)的解析式;
(3)写出f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q分别是线段CC1,BD上的点,R是直线AD上的点,满足PQ∥平面ABC1D1,PQ⊥RQ,且P、Q不是正方体的顶点,则|PR|的最小值是(  )
A.$\frac{{\sqrt{42}}}{6}$B.$\frac{{\sqrt{30}}}{5}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a,b∈(0,+∞),求证:${({{a^3}+{b^3}})^{\frac{1}{3}}}<{({{a^2}+{b^2}})^{\frac{1}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\frac{1+2i}{a+bi}$=2-i(i为虚数单位,a,b∈R),在|a-bi|=(  )
A.-iB.1C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求证:cos($\frac{5k-1}{5}$π-θ)+cos($\frac{5k+1}{5}$π+θ)=(-1)k•2cos($\frac{π}{5}$+θ)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆 C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)经过点 (1,$\frac{{\sqrt{3}}}{2}$),离心率为$\frac{{\sqrt{3}}}{2}$,点A为椭圆C的右顶点,直线l与椭圆相交于不同于点 A 的两个点P (x1,y1),Q (x2,y2).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)当 $\overrightarrow{AP}$?$\overrightarrow{AQ}$=0时,求△OPQ面积的最大值;
(Ⅲ)若x1y2-x2y1≥2,求证:|OP|2+|OQ|2 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的顶点都在球O的球面上,则球O的表面积为(  )
A.25πB.50πC.75πD.100π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知某几何体的三视图如图,则该几何体的体积是(  )
A.$\frac{{4\sqrt{3}}}{3}$B.$4\sqrt{3}$C.$2\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案