分析 根据直线与圆相切的性质可求PA=PB,及∠APB,然后代入向量数量积的定义可求$\overrightarrow{PA}•\overrightarrow{PB}$.
解答 解:连接OA,OB,PO
则OA=OB=1,PO=,2,OA⊥PA,OB⊥PB,
Rt△PAO中,OA=1,PO=2,PA=$\sqrt{3}$
∴∠OPA=30°,∠BPA=2∠OPA=60°
∴$\overrightarrow{PA}•\overrightarrow{PB}$=$|\overrightarrow{PA}|•|\overrightarrow{PB}|cos60°$=$\sqrt{3}×\sqrt{3}×\frac{1}{2}$=$\frac{3}{2}$
故答案为:$\frac{3}{2}$![]()
点评 本题主要考查了圆的切线性质的应用及平面向量的数量积的定义的应用,属于基础试题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-i | B. | 1+i | C. | -1-i | D. | -1+i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com