精英家教网 > 高中数学 > 题目详情
12.已知c>0,设命题p:y=cx为减函数,命题q:函数f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$在x∈[$\frac{1}{2}$,2]上恒成立.若p∨q为真命题,p∧q为假命题,求c的取值范围.

分析 由y=cx为减函数求出满足p真的c的范围;再由f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$在x∈[$\frac{1}{2}$,2]上恒成立求出c的范围,把p∨q为真命题,p∧q为假命题转化为命题p与q一真一假,然后分类求解c的范围,取并集得答案.

解答 解:∵命题p:y=cx为减函数,∴0<c<1;
函数f(x)=x+$\frac{1}{x}$≥$2\sqrt{x•\frac{1}{x}}=2$,当且仅当x=1时取“=”,
∴f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$在x∈[$\frac{1}{2}$,2]上恒成立,即2$>\frac{1}{c}$恒成立,即c$>\frac{1}{2}$.
若p∨q为真命题,p∧q为假命题,则命题p与q一真一假,
当p真q假时,0$<c≤\frac{1}{2}$;
当p假q真时,c≥1.
∴c的取值范围是(0,$\frac{1}{2}$]∪[1,+∞).

点评 本题考查复合命题的真假判断,考查了函数恒成立问题的求解方法,体现了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.观察以下等式:
sin230°+cos260°+sin30°cos60°=$\frac{3}{4}$,
sin220°+cos250°+sin20°cos50°=$\frac{3}{4}$,
sin215°+cos245°+sin15°cos45°=$\frac{3}{4}$,…
分析上述各式的共同特点,判断下列结论中正确的个数是
(1)sin2α+cos2β+sinαcosβ=$\frac{3}{4}$
(2)sin2(θ-30°)+cos2θ+sin(θ-30°)cosθ=$\frac{3}{4}$
(3)sin2(α-15°)+cos2(α+15°)+sin(α-15°)cos(α+15°)=$\frac{3}{4}$
(4)sin2α+cos2(α+30°)+sinαcos(α+30°)=$\frac{3}{4}$(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线y2=4x+a的焦点在圆(x-1)2+(y+1)2=5的内部,则a的取值范围区间(  )
A.(-4,12)B.(-1,3)C.(-2,2)D.(-8,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.现有1角、2角、5角、1元、2元、5元、10元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数(  )
A.1024种B.1023种C.767种D.1535种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的公差不为零,a1=25,且a${\;}_{11}^{2}$=a1•a13,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a?α,b?β,a∩b=M,则(  )
A.M∉βB.M?βC.M?αD.M∈β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}为等差数列.
(1)若a1=1,d=4,求a20
(2)若a1=6,a8=27,求d;
(3)若a1=8,a7=32,求d和a13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知α∈(0,4π),且sinα=$\frac{1}{2}$,则α的值为$\frac{π}{6}$,$\frac{5π}{6}$,$\frac{13π}{6}$,$\frac{17π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将函数y=sin(ωx-$\frac{π}{6}$)(ω>0)的图象向左平移$\frac{π}{3ω}$个单位,得到函数f(x)的图象,若函数f(x)在(0,2]上恰有一个最大值1和最小值-1,则ω的取值范围是$\frac{2π}{3}$≤ω<$\frac{7π}{6}$.

查看答案和解析>>

同步练习册答案