精英家教网 > 高中数学 > 题目详情
4.已知数列{an}为等差数列.
(1)若a1=1,d=4,求a20
(2)若a1=6,a8=27,求d;
(3)若a1=8,a7=32,求d和a13

分析 分别根据等差数列的通项公式an=a1+(n-1)d即可求出.

解答 解:(1)a1=1,d=4,则a20=a1+(20-1)d=1+19×4=77,
(2)a1=6,a8=27,则a8=a1+(8-1)d,即27=6+7d,解得d=3,
(3)a1=8,a7=32,则a7=a1+(7-1)d,即32=8+6d,解得d=4,
a13=a1+(13-1)d=8+12×4=56.

点评 本题考查了等差数列的通项公式,关键是掌握通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.将函数y=cosx的图象经过怎样的平移,可以得到函数$y=sin(x+\frac{π}{6})$的图象(  )
A.向左平移$\frac{π}{6}$个单位B.向左平移$\frac{π}{3}$个单位
C.向右平移$\frac{π}{3}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线C:x2=2py(p>0),倾斜角为$\frac{π}{4}$且过点M(0,1)的直线l与C相交于A,B两点,且$\overrightarrow{AM}$=2$\overrightarrow{MB}$.
(Ⅰ)求抛物线C的方程;
(Ⅱ)抛物线C上一动点N,记以MN为直径的圆的面积为S,求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知c>0,设命题p:y=cx为减函数,命题q:函数f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$在x∈[$\frac{1}{2}$,2]上恒成立.若p∨q为真命题,p∧q为假命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a2,b2,c2成等差数列,则cosB的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(x+1)(x-3)5的展开式中含x3项的系数为-180.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若对于任意x,有f′(x)=4x3,f(1)=3,则此函数的解析式为(  )
A.f(x)=x4-1B.f(x)=x4-2C.f(x)=x4+1D.f(x)=x4+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在底面直径和高均为4的圆柱体内任取一点P,则点P到该圆柱体上、下底面圆心的距离均不小于2的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知二次函数f(x)=(m-2)x2-(m2-4)x+2的图象关于y轴对称,求f(3).

查看答案和解析>>

同步练习册答案