精英家教网 > 高中数学 > 题目详情
20.已知z=($\frac{1-i}{\sqrt{2}}$)2016(i是虚数单位),则z等于(  )
A.-1B.1C.0D.i

分析 直接利用复数的除法以及乘方运算法则化简求解即可.

解答 解:z=($\frac{1-i}{\sqrt{2}}$)2016=$\frac{[(1-i)^{2}]^{1008}}{{2}^{1008}}$=$\frac{{2}^{1008}{i}^{1008}}{{2}^{1008}}$=1.
故选:B.

点评 本题考查复数的代数形式混合运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数y=$\sqrt{3}$cos2x-sin2x的一个单调区间是(  )
A.[-$\frac{π}{6}$,$\frac{π}{6}$]B.[-$\frac{π}{6}$,$\frac{2π}{3}$]C.[$\frac{π}{12}$,$\frac{7π}{12}$]D.[-$\frac{π}{12}$,$\frac{5π}{12}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosB=bcosA.
(1)判断△ABC的形状;
(2)求sin(2A+$\frac{π}{6}$)-2cos2B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某电脑的硬盘在电脑启动后,每3分钟转2000转,则每分钟所转弧度数为$\frac{2000π}{3}$,其正弦值sin$\frac{2000π}{3}$=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数a,b满足:a≥$\frac{1}{2}$,b∈R,且a+|b|≤1,则$\frac{1}{2a}$+b的取值范围是[$\sqrt{2}$-1,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=log2(x2+ax+b)的定义域为(-∞,1)∪(3,+∞),则a=-4,b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数列{$\frac{1}{(2n-1)(2n+1)}$}的前n项和为(  )
A.$\frac{n}{2n+1}$B.$\frac{2n}{2n+1}$C.$\frac{n}{4n+2}$D.$\frac{2n}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若(2x-1)2013=a0+a1x+…+a2013x2013(x∈R),则$\frac{1}{2}$+$\frac{{a}_{2}}{{2}^{2}{a}_{1}}$+$\frac{{a}_{3}}{{2}^{3}{a}_{1}}$+…+$\frac{{a}_{2013}}{{a}^{2013}{a}_{1}}$=$\frac{1}{4026}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若向量$\overrightarrow{OA}$=(1,-1),|$\overrightarrow{OA}$=|$\overrightarrow{OB}$|,$\overrightarrow{OA}$•$\overrightarrow{OB}$=-1,则向量$\overrightarrow{OA}$与$\overrightarrow{OB}$-$\overrightarrow{OA}$夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案