精英家教网 > 高中数学 > 题目详情
8.若f(x)是定义在R上的函数,对任意的实数x,都有f(x+3)≤f(x)+3和f(x+2)≥f(x)+2,且f(1)=1,f(2013)的值是2013.

分析 利用两个不等式,得到f(x+6)≥f(x)+6,且f(x+6)≤f(x)+6,通过两边夹的性质得到得到f(x+6)=f(x)+6利用递推式求出值.

解答 解:∵对任意的实数x,都有f(x+3)≤f(x)+3和f(x+2)≥f(x)+2,f(1)=1,
∴f(x+3)=f(x+1+2)≥f(x+1)+2,
即f(x+1)+2≤f(x+3)≤f(x)+3,
即f(x+1)≤f(x)+1,
∴f(3)≤f(2)+1≤f(1)+2≤3,
又∵f(x+2)≥f(x)+2,
∴f(3)≥f(1)+2≥3,
∴f(3)=3
由f(x+3)≤f(x)+3和f(x+2)≥f(x)+2可得:
f(x+6)≥f(x)+6,
f(x+6)≤f(x)+6,
∴f(x+6)=f(x)+6,
∴f(2013)=335×6+f(3)=2013
故答案为:2013

点评 本题考查通过不等式的性质:两边夹,由不等式得到等式、考查函数递推公式的应用.解题的关键是得到f(x+6)=f(x)+6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.数列{$\frac{{n}^{2}}{{2}^{n}}$}(n=1,2,…),则数列中的最大项为$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若函数f(x)满足f(x-y)=$\frac{f(x)}{f(y)}$,f(x)≠0,且x>0时,f(x)>1,已知f(4)=16.
(1)求f(0)和f(2)的值;
(2)求使不等式f(2x-3)f(2-3x)≤4成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{2x-1,-1<x≤2}\\{{x}^{2}-2,2<x<3}\end{array}\right.$,则不等式f(x)>x的解集为(  )
A.(1,3)B.(-∞,1)∪(3,+∞)C.{2}D.(1,2)∪(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.偶函数f(x)的图象关于x=1对称,且当x∈[0,1]时,f(x)=x,则函数y=f(x)的图象与函数y=lg|x|的图象的交点个数为(  )
A.14B.16C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对于任意的x1,x2∈R,若函数f(x)=2x,试比较 $\frac{f({x}_{1})+f({x}_{2})}{2}$与f($\frac{{x}_{1}+{x}_{2}}{2}$)的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列1+$\frac{1}{{2}^{2}}$,1-$\frac{3}{{4}^{2}}$,1+$\frac{5}{{6}^{2}}$,1-$\frac{7}{{8}^{2}}$…的通项an=1+(-1)n+1•$\frac{2n-1}{(2n)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)是定义在(-2,2)上的减函数,满足:f(-x)=-f(x),且f(m-1)+f(2m-1)>0
(1)求实数m的取值范围.
(2)若f(1)=-3,解不等式f(x+1)-3>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=f(x)的定义域是[0,1],若0<a<$\frac{1}{2}$,则函数y=f(x+a)+f(x-a)的定义域为[a,1-a].

查看答案和解析>>

同步练习册答案