分析 利用两个不等式,得到f(x+6)≥f(x)+6,且f(x+6)≤f(x)+6,通过两边夹的性质得到得到f(x+6)=f(x)+6利用递推式求出值.
解答 解:∵对任意的实数x,都有f(x+3)≤f(x)+3和f(x+2)≥f(x)+2,f(1)=1,
∴f(x+3)=f(x+1+2)≥f(x+1)+2,
即f(x+1)+2≤f(x+3)≤f(x)+3,
即f(x+1)≤f(x)+1,
∴f(3)≤f(2)+1≤f(1)+2≤3,
又∵f(x+2)≥f(x)+2,
∴f(3)≥f(1)+2≥3,
∴f(3)=3
由f(x+3)≤f(x)+3和f(x+2)≥f(x)+2可得:
f(x+6)≥f(x)+6,
f(x+6)≤f(x)+6,
∴f(x+6)=f(x)+6,
∴f(2013)=335×6+f(3)=2013
故答案为:2013
点评 本题考查通过不等式的性质:两边夹,由不等式得到等式、考查函数递推公式的应用.解题的关键是得到f(x+6)=f(x)+6.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,3) | B. | (-∞,1)∪(3,+∞) | C. | {2} | D. | (1,2)∪(2,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 14 | B. | 16 | C. | 18 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com