数列的前项和为,且是和的等差中项,等差数列满足
(1)求数列、的通项公式
(2)设=,求数列的前项和.
(1) , (2)
解析试题分析:(1)由与的关系可得及,两式相减可得数列的通项公式,在使用与的关系时要注意与的情况讨论;(2) 的通项公式是由一个等差数列与一个等比数列比值的形式,求其和时可用错位相减法.两式相减时要注意下式的最后一项出现负号,等比求和时要数清等比数列的项数,也可以使用这个求和公式,它可以避免找数列的数项;最终结果化简依靠指数运算,要保证结果的成功率,可用作为特殊值检验结果是否正确.
试题解析:(1)由题意知,,故
又时,由得,即
故是以1为首项以2为公比的等比数列,
所以。
因为,所以的公差为2,所以
(2)由=,得①
②
-②得
所以
考点:1、与的关系;2、错位相减法求数列和.
科目:高中数学 来源: 题型:解答题
已知数列{an}的前n项和为Sn,且满足an=Sn+1(n∈N*);
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若,cn=,且{cn}的前n项和为Tn,求使得 对n∈N*都成立的所有正整数k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com