精英家教网 > 高中数学 > 题目详情

数列的前项和为,且的等差中项,等差数列满足 
(1)求数列的通项公式
(2)设=,求数列的前项和.

(1)  ,   (2)

解析试题分析:(1)由的关系可得,两式相减可得数列的通项公式,在使用的关系时要注意的情况讨论;(2) 的通项公式是由一个等差数列与一个等比数列比值的形式,求其和时可用错位相减法.两式相减时要注意下式的最后一项出现负号,等比求和时要数清等比数列的项数,也可以使用这个求和公式,它可以避免找数列的数项;最终结果化简依靠指数运算,要保证结果的成功率,可用作为特殊值检验结果是否正确.
试题解析:(1)由题意知,,故
时,由,即
是以1为首项以2为公比的等比数列,
所以
因为,所以的公差为2,所以
(2)由=,得

-②得


所以
考点:1、的关系;2、错位相减法求数列和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

求数列项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,且;数列中,在直线上.
(1)求数列的通项公式;
(2)设数列的前和为,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn=3n-1.
(1)求数列{an}的通项公式;
(2)若bn (Sn+1),求数列{bnan}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列中,已知.
(1)求
(2)若,设数列的前项和为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,且满足anSn+1(n∈N*);
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若,cn,且{cn}的前n项和为Tn,求使得 对n∈N*都成立的所有正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列,满足
(I)求证:数列均为等比数列;
(Ⅱ)求数列的通项公式
(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项都是正数,前项和是,且点在函数的图像上.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

定义在上的函数满足,则         

查看答案和解析>>

同步练习册答案