精英家教网 > 高中数学 > 题目详情
18.若双曲线x2+my2=1过点(-$\sqrt{2}$,2),则该双曲线的虚轴长为4.

分析 根据条件求出双曲线的标准方程即可得到结论.

解答 解:∵双曲线x2+my2=1过点(-$\sqrt{2}$,2),
∴2+4m=1,即4m=-1,
m=-$\frac{1}{4}$,
则双曲线的标准范围为x2-$\frac{{y}^{2}}{4}$=1,
则b=2,
即双曲线的虚轴长2b=4,
故答案为:4.

点评 本题主要考查双曲线的方程的应用,利用点和双曲线的关系求出双曲线的标准方程是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.函数f(x)=$\sqrt{|x|+|{x+1}|-3}$.
(1)求函数f(x)的定义域A;
(2)设B={x|-1<x<2},当实数a,b∈(B∩(∁RA))时,证明:$\frac{{|{a+b}|}}{2}$<|1+$\frac{ab}{4}}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若某程序框图如图所示,则该程序运行后输出的值等于5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,输出S的值是(  )
A.$-\frac{{\sqrt{3}}}{2}$B.0C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知l1,l2分别为双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的两条渐近线,且右焦点关于l1的对称点在l2上,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若某程序框图如图所示,则该程序运行后输出的值是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若双曲线mx2+2y2=2的虚轴长为2,则该双曲线的焦距为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x,y满足条件$\left\{\begin{array}{l}{x-\frac{1}{2}y+1≥0}\\{x+y≤2}\\{x-2y≤2}\end{array}\right.$,若z=mx+y取得最大值的最优解不唯一,则实数m的值为(  )
A.1或-$\frac{1}{2}$B.1或-2C.-1或-2D.-2或-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|(ax-1)(x-1)|(a∈R).
(1)当a=$\frac{1}{3}$时,求函数f(x)的单调区间;
(2)当a>1时,若函数g(x)=f(x)-|x-a|至少有三个零点,求a的取值范围;
(3)当0≤a≤1时,若对任意的x∈[0,2],都有m≥f(x)恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案