精英家教网 > 高中数学 > 题目详情
9.已知直线y=x+b与圆x2+y2-2x+4y-4=0相交于A,B两点,O为坐标原点,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则实数b的值为1或-4.

分析 将直线方程代入圆的方程,利用韦达定理,及以AB为直径的圆过原点,可得关于b的方程,即可求解,注意方程判别式的验证.

解答 解:由直线y=x+b与圆x2+y2-2x+4y-4=0,消去y,得2x2+(2+2b)x+b2+4b-4=0①
设直线l和圆C的交点为A (x1,y1),B(x2,y2),则x1、x2是①的两个根.
∴x1x2=$\frac{{b}^{2}+4b-4}{2}$,x1+x2=-b-1.             ②
由题意有:OA⊥OB,即x1x2+y1y2=0,
∴x1x2+(x1+b)(x2+b)=0,即2x1x2+b(x1+x2)+b2=0③
将②代入③得:b2+3b-4=0.                  
解得:b=1或b=-4,
b=1时,方程为2x2+4x+1=0,判别式△=16-8>0,满足题意
b=-4时,方程为2x2-6x-4=0,判别式△=36+32>0,满足题意
所以满足条件的b为:b=1或b=-4.
故答案为1或-4.

点评 本题综合考查直线与圆的位置关系,考查韦达定理的运用,属于基本知识的考查与应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.方程x2+y2-2x+m=0表示一个圆,则x的范围是(  )
A.m<1B.m<2C.m≤$\frac{1}{2}$D.m≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某工厂2015年生产某产品2万件,计划从2016年开始每年比上一年增产20%,从哪一年开始这家工厂生产这种产品的年产量超过6万件(已知lg2=0.3010,lg3=0.4771)(  )
A.2019年B.2020年C.2021年D.2022年

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知f(x)=$\frac{{3}^{x}-1}{{3}^{x}+1}$,证明:f(x)是R上的增函数;
(2)解方程:log5(3-2•5x)=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.命题“p:x-1=0”是命题“q:(x-1)(x+2)=0”的充分不必要条件.(填:“充分不必要”、“必要不充分”、“充要条件”、“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C:x2+y2-4x-4y+4=0,点E(3,4).
(1)过点E的直线l与圆交与A,B两点,若AB=2$\sqrt{3}$,求直线l的方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点记为M,O为坐标原点,且满足PM=PO,求使得PM取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.不等式1≤|2x-1|<2的解集为(  )
A.$({-\frac{1}{2},0})∪[{1,\frac{3}{2}})$B.$({-\frac{1}{2},\frac{3}{2}})$C.$({-\frac{1}{2},0}]∪[{1,\frac{3}{2}})$D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在正方体ABCD-A'B'C'D'中,点P在线段AD'上,且AP≤$\frac{1}{2}$AD'则异面直线CP与BA'所成角θ的取值范围是[$\frac{π}{6}$,$\frac{π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=ex(sinx+a)在区间(0,π)上单调递减,则实数a的取值范围是(  )
A.[-$\sqrt{2}$,+∞)B.[1,+∞)C.(-∞,-$\sqrt{2}$]D.(-∞,1]

查看答案和解析>>

同步练习册答案