精英家教网 > 高中数学 > 题目详情
14.已知圆C:x2+y2-4x-4y+4=0,点E(3,4).
(1)过点E的直线l与圆交与A,B两点,若AB=2$\sqrt{3}$,求直线l的方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点记为M,O为坐标原点,且满足PM=PO,求使得PM取得最小值时点P的坐标.

分析 (1)⊙C:x2+y2+2x-4y+3=0,化为标准方程,求出圆心C,半径r.分类讨论,利用C到l的距离为1,即可求直线l的方程;
(2)设P(x,y).由切线的性质可得:CM⊥PM,利用|PM|=|PO|,可得y+x-1=0,求|PM|的最小值,即求|PO|的最小值,即求原点O到直线y+x-1=0的距离.

解答 解:圆C方程可化为(x-2)2+(y-2)2=4
(1)当直线l与x轴垂直时,满足$AB=2\sqrt{3}$,所以此时l:x=3…(2分)
当直线l与x轴不垂直时,设直线l方程为y-4=k(x-3),
即y=kx-3k+4…(3分)
因为$AB=2\sqrt{3}$,所以圆心到直线的距离$d=\sqrt{4-3}=1$…(4分)
由点到直线的距离公式得$\frac{|-k+2|}{{\sqrt{1+{k^2}}}}=1$解得$k=\frac{3}{4}$
所以直线l的方程为$y=\frac{3}{4}x+\frac{7}{4}$…(6分)
所以所求直线l的方程为x=3或 $y=\frac{3}{4}x+\frac{7}{4}$…(7分)
(2)因为PM=PO,$PM=\sqrt{{{({x_1}-2)}^2}+{{({y_1}-2)}^2}-4}$,$PO={\sqrt{{x_1}^2+{y_1}^2}_{\;}}^{\;}$
化简得y1+x1-1=0…(10分)
即点P(x1,y1)在直线y+x-1=0上,…(12分)
当PM最小时,即PO取得最小,此时OP垂直直线y+x-1=0
所以OP的方程为y-x=0…(14分)
所以$\left\{{\begin{array}{l}{y-x=0}\\{y+x-1=0}\end{array}}\right.$解得$\left\{{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{1}{2}}\end{array}}\right.$
所以点P的坐标为$(\frac{1}{2},\frac{1}{2})$…(16分)

点评 本题考查直线方程,考查直线与圆的位置关系,考查了圆的切线的性质、勾股定理、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.点(3,1)关于直线y=x对称的点的坐标是(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)的定义域为[7,15),设f(2x+1)的定义域为A,B={x|x<a或x>a+1},若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,当输入的x值为3时,输出y的结果是12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线y=x+b与圆x2+y2-2x+4y-4=0相交于A,B两点,O为坐标原点,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则实数b的值为1或-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法中正确的个数是(  )
①若两个平面α∥β,a?α,b?β,则a∥b;
②若两个平面α∥β,a?α,b?β,则a与b异面;
③若两个平面α∥β,a?α,b?β,则a与b一定不相交;
④若两个平面α∥β,a?α,b?β,则a与b平行或异面.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=ax在[0,1]上最大值与最小值的和为3,则a=(  )
A.2B.$\frac{1}{2}$C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|-1≤x≤2},B={|x|x<1},则A∪(∁RB)等于(  )
A.{x|x≥1}B.{x|x≥-1}C.{x|-1≤x≤2}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,a,b,c是角A,B,C对应的边,向量$\overrightarrow{m}$=(a+b,-c),$\overrightarrow{n}$=(a+b,c),且$\overrightarrow{m}$•$\overrightarrow{n}$=(2+$\sqrt{3}$)ab.
(1)求角C
(2)函数f(x)=2sin(A+B)cos2(ωx)-cos(A+B)sin(2ωx)-$\frac{1}{2}$(ω>0)的相邻两条对称轴分别为x=x0,x=x0+$\frac{π}{2}$,求f(x)在区间[-π,π]上的单调递增区间.

查看答案和解析>>

同步练习册答案