4£®ÔÚ¡÷ABCÖУ¬a£¬b£¬cÊǽÇA£¬B£¬C¶ÔÓ¦µÄ±ß£¬ÏòÁ¿$\overrightarrow{m}$=£¨a+b£¬-c£©£¬$\overrightarrow{n}$=£¨a+b£¬c£©£¬ÇÒ$\overrightarrow{m}$•$\overrightarrow{n}$=£¨2+$\sqrt{3}$£©ab£®
£¨1£©Çó½ÇC
£¨2£©º¯Êýf£¨x£©=2sin£¨A+B£©cos2£¨¦Øx£©-cos£¨A+B£©sin£¨2¦Øx£©-$\frac{1}{2}$£¨¦Ø£¾0£©µÄÏàÁÚÁ½Ìõ¶Ô³ÆÖá·Ö±ðΪx=x0£¬x=x0+$\frac{¦Ð}{2}$£¬Çóf£¨x£©ÔÚÇø¼ä[-¦Ð£¬¦Ð]Éϵĵ¥µ÷µÝÔöÇø¼ä£®

·ÖÎö £¨1£©¸ù¾ÝÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËË㣬½áºÏÓàÏÒ¶¨Àí£¬¼´¿ÉÇó³öCµÄÖµ£»
£¨2£©ÀûÓÃÈý½ÇºãµÈ±ä»»»¯¼òf£¨x£©£¬¸ù¾ÝÕýÏÒº¯ÊýµÄͼÏóÓëÐÔÖʼ´¿ÉÇó³öf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£®

½â´ð ½â£º£¨1£©ÒòΪÏòÁ¿$\overrightarrow{m}$=£¨a+b£¬-c£©£¬$\overrightarrow{n}$=£¨a+b£¬c£©£¬ÇÒ$\overrightarrow{m}$•$\overrightarrow{n}$=£¨2+$\sqrt{3}$£©ab£¬
ËùÒÔa2+b2-c2=$\sqrt{3}$ab£¬¹ÊcosC=$\frac{\sqrt{3}}{2}$£¬
0£¼C£¼¦Ð£¬¡àC=$\frac{¦Ð}{6}$£»¡­£¨4·Ö£©
£¨2£©f£¨x£©=2sin£¨A+B£©cos2£¨¦Øx£©-cos£¨A+B£©sin£¨2¦Øx£©-$\frac{1}{2}$
=2sinCcos2¦Øx+cosCsin2¦Øx-$\frac{1}{2}$
=cos2¦Øx+$\frac{\sqrt{3}}{2}$sin2¦Øx-$\frac{1}{2}$
=sin£¨2¦Øx+$\frac{¦Ð}{6}$£©£¬¡­£¨7·Ö£©
ÒòΪÏàÁÚÁ½Ìõ¶Ô³ÆÖá·Ö±ðΪx=x0£¬x=x0+$\frac{¦Ð}{2}$£¬
ËùÒÔf£¨x£©µÄ×îСÕýÖÜÆÚΪT=¦Ð£¬¦Ø=1£»
 ËùÒÔf£¨x£©=sin£¨2x+$\frac{¦Ð}{6}$£©£»¡­£¨9·Ö£©
ÓÉ2k¦Ð-$\frac{¦Ð}{2}$£¼2x+$\frac{¦Ð}{6}$£¼2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ£¬
µÃk¦Ð-$\frac{¦Ð}{3}$¡Üx¡Ük¦Ð+$\frac{¦Ð}{6}$£¬k¡ÊZ£»¡­£¨10·Ö£©
ÓÖÒòΪx¡Ê[-¦Ð£¬¦Ð]£¬
ËùÒÔf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ[-¦Ð£¬-$\frac{5¦Ð}{6}$]£¬[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{6}$]£¬[$\frac{2¦Ð}{3}$£¬¦Ð]£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÓëÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÈý½Çº¯ÊýµÄ»¯¼òÓëÔËËãÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÔ²C£ºx2+y2-4x-4y+4=0£¬µãE£¨3£¬4£©£®
£¨1£©¹ýµãEµÄÖ±ÏßlÓëÔ²½»ÓëA£¬BÁ½µã£¬ÈôAB=2$\sqrt{3}$£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨2£©´ÓÔ²CÍâÒ»µãP£¨x1£¬y1£©Ïò¸ÃÔ²ÒýÒ»ÌõÇÐÏߣ¬Çеã¼ÇΪM£¬OÎª×ø±êÔ­µã£¬ÇÒÂú×ãPM=PO£¬ÇóʹµÃPMÈ¡µÃ×îСֵʱµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èôº¯Êýf£¨x£©=x2+2£¨a-1£©x+2ÔÚÇø¼ä[-1£¬2]Éϵ¥µ÷£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[2£¬+¡Þ£©B£®£¨-¡Þ£¬-1]C£®£¨-¡Þ£¬-1]¡È[2£¬+¡Þ£©D£®£¨-¡Þ£¬-1£©¡È£¨2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Éèp£ºÊµÊýxÂú×㣺x2-4ax+3a2£¼0£¨a£¾0£©£¬q£ºÊµÊýxÂú×㣺x=£¨$\frac{1}{2}$£©m-1£¬m¡Ê£¨1£¬2£©£®
£¨¢ñ£©Èôa=$\frac{1}{4}$£¬ÇÒp¡ÄqÎªÕæ£¬ÇóʵÊýxµÄȡֵ·¶Î§£»
£¨¢ò£©qÊÇpµÄ³ä·Ö²»±ØÒªÌõ¼þ£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èôº¯Êýf£¨x£©=ex£¨sinx+a£©ÔÚÇø¼ä£¨0£¬¦Ð£©Éϵ¥µ÷µÝ¼õ£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-$\sqrt{2}$£¬+¡Þ£©B£®[1£¬+¡Þ£©C£®£¨-¡Þ£¬-$\sqrt{2}$]D£®£¨-¡Þ£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Ô²ÐÄΪ£¨3£¬0£©£¬¶øÇÒÓëyÖáÏàÇеÄÔ²µÄ±ê×¼·½³ÌΪ£¨x-3£©2+y2=9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÉèÃüÌâp£º?x¡ÊR£¬¶¼ÓÐax2£¾-ax-1£¨a¡Ù0£©ºã³ÉÁ¢£»ÃüÌâq£ºÔ²x2+y2=a2ÓëÔ²£¨x+3£©2+£¨y-4£©2=4ÍâÀ룮Èç¹ûÃüÌâ¡°p¡Åq¡±ÎªÕæÃüÌ⣬¡°p¡Äq¡±Îª¼ÙÃüÌ⣬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªf£¨x£©=$\frac{a•{2}^{x}+a+2}{{2}^{x}+1}$£¨x¡ÊR£©£¬Èôf£¨x£©Âú×ãf£¨-x£©=-f£¨x£©£®
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©Ö¤Ã÷f£¨x£©ÊÇRÉϵĵ¥µ÷¼õº¯Êý£¨¶¨Òå·¨£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁк¯ÊýÖУ¬¼ÈÊÇżº¯ÊýÓÖÔÚÇø¼ä£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔöµÄÊÇ£¨¡¡¡¡£©
A£®$y=\frac{1}{x}$B£®y=1g|x|C£®y=cosxD£®y=x2+2x

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸