精英家教网 > 高中数学 > 题目详情
19.若函数f(x)=ex(sinx+a)在区间(0,π)上单调递减,则实数a的取值范围是(  )
A.[-$\sqrt{2}$,+∞)B.[1,+∞)C.(-∞,-$\sqrt{2}$]D.(-∞,1]

分析 利用导函数研究其单调性即可得答案.

解答 解:由题意:函数f(x)=ex(sinx+a)
那么:f′(x)=ex(cosx+sinx+a)=ex[$\sqrt{2}$sin(x+$\frac{π}{4}$)+a]
∵x∈(0,π)
∴$\frac{π}{4}$≤x+$\frac{π}{4}$$≤\frac{5π}{4}$,
则:[sin(x+$\frac{π}{4}$)]min=$-\frac{\sqrt{2}}{2}$
∵函数f(x)在区间(0,π)上单调递减,
∴有$\sqrt{2}$[sin(x+$\frac{π}{4}$)]min+a≤0,
解得:a≤1,
实数a的取值范围是(-∞,1].
故选D.

点评 本题考查了函数单调性的运用求解参数问题,利用了导函数研究原函数的单调性.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知直线y=x+b与圆x2+y2-2x+4y-4=0相交于A,B两点,O为坐标原点,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则实数b的值为1或-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知a≥0且{y|y=2|x|,-2≤x≤a}=[m,n],记g(a)=n-m,则g(a)=$g(a)=\left\{\begin{array}{l}3,0≤a≤2\\{2^a}-1,a>2\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,a,b,c分别为内角A,B,C所对的边,若a=$\sqrt{3}$,A=$\frac{π}{3}$,则b+c的最大值为(  )
A.4B.3$\sqrt{3}$C.2$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.△ABC中,角A,B,C的对边分别为a,b,c,A=$\frac{3π}{4}$,sinB=$\frac{\sqrt{10}}{10}$,D为BC边中点,AD=1.
(Ⅰ)求$\frac{b}{c}$的值;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,a,b,c是角A,B,C对应的边,向量$\overrightarrow{m}$=(a+b,-c),$\overrightarrow{n}$=(a+b,c),且$\overrightarrow{m}$•$\overrightarrow{n}$=(2+$\sqrt{3}$)ab.
(1)求角C
(2)函数f(x)=2sin(A+B)cos2(ωx)-cos(A+B)sin(2ωx)-$\frac{1}{2}$(ω>0)的相邻两条对称轴分别为x=x0,x=x0+$\frac{π}{2}$,求f(x)在区间[-π,π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将直线l1:x-y-3=0,绕它上面一定点(3,0)沿逆时针方向旋转15°得直线l2,则l2的方程为$\sqrt{3}$x-y-3$\sqrt{3}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.销售甲、乙两种商品所得利润分别是P(单位:万元)和Q(单位:万元),它们与投入资金t(单位:万元)的关系有经验公式P=$\frac{1}{5}$t,Q=$\frac{3}{5}\sqrt{t}$.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(单位:万元),
(1)试建立总利润y(单位:万元)关于x的函数关系式;
(2)当对甲种商品投资x(单位:万元)为多少时?总利润y(单位:万元)值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.
(I)若函数f(x)在x=3处取得极值,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)若a>$\frac{1}{2}$,函数y=f(x)在[0,2a]上的最小值是-a2,求a的值.

查看答案和解析>>

同步练习册答案