精英家教网 > 高中数学 > 题目详情
11.将直线l1:x-y-3=0,绕它上面一定点(3,0)沿逆时针方向旋转15°得直线l2,则l2的方程为$\sqrt{3}$x-y-3$\sqrt{3}$=0.

分析 由题意可得直线l的倾斜角,进而可得直线l2的倾斜角,可得其斜率,可得直线方程.

解答 解:∵直线l:x-y+3=0的斜率为1,故倾斜角为45°,
∴直线l2的倾斜角为45°+15°=60°,斜率为tan60°=$\sqrt{3}$,
∴直线l2的方程为y-0=$\sqrt{3}$(x-3),
即$\sqrt{3}$x-y-3$\sqrt{3}$=0,
故答案为:$\sqrt{3}$x-y-3$\sqrt{3}$=0.

点评 本题考查直线的夹角,涉及倾斜角和斜率的关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.不等式1≤|2x-1|<2的解集为(  )
A.$({-\frac{1}{2},0})∪[{1,\frac{3}{2}})$B.$({-\frac{1}{2},\frac{3}{2}})$C.$({-\frac{1}{2},0}]∪[{1,\frac{3}{2}})$D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.角α的终边在第一象限,则$\frac{sin\frac{α}{2}}{|sin\frac{α}{2}|}$+$\frac{cos\frac{α}{2}}{|cos\frac{α}{2}|}$的取值集合为(  )
A.{-2,2}B.{0,2}C.{2}D.{0,-2,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=ex(sinx+a)在区间(0,π)上单调递减,则实数a的取值范围是(  )
A.[-$\sqrt{2}$,+∞)B.[1,+∞)C.(-∞,-$\sqrt{2}$]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的首项a1=2,且an=2an-1-1(n∈N*,N≥2)
(1)求证:数列{an-1}为等比数列;并求数列{an}的通项公式;
(2)求数列{n•an-n}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设命题p:?x∈R,都有ax2>-ax-1(a≠0)恒成立;命题q:圆x2+y2=a2与圆(x+3)2+(y-4)2=4外离.如果命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设lg(4a)+lgb=2lg(a-3b),则log3$\frac{a}{b}$的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=$\left\{\begin{array}{l}{-x+3,-1≤x≤1}\\{1+lo{g}_{({a}^{2}-1)}(2x),2≤x≤8}\end{array}\right.$的值域是[2,5],则实数a的取值是$±\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是定义在(0,+∞)上的函数,f'(x)是f(x)的导函数,且总有f(x)>xf'(x),则不等式f(x)>xf(1)的解集为(  )
A.(-∞,0)B.(0,1)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

同步练习册答案