精英家教网 > 高中数学 > 题目详情
3.设lg(4a)+lgb=2lg(a-3b),则log3$\frac{a}{b}$的值为2.

分析 利用对数运算法则化简已知条件,推出结果即可.

解答 解:lg(4a)+lgb=2lg(a-3b),a>3b>0
可得4ab=(a-3b)2=a2-6ab+9b2
即:a2-10ab+9b2=0,即(a-b)(a-9b)=0,
可得a=b(舍去)或a=9b.
log3$\frac{a}{b}$=log39=2.
故答案为:2.

点评 本题考查对数运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图,设线段DA和平面ABC所成角为α(0<α<$\frac{π}{2}}$),二面角D-AB-C的平面角为β,则(  )
A.α≤β<πB.α≤β≤π-αC.$\frac{π}{2}-α≤β<π$D.$\frac{π}{2}-α≤β≤π-α$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.△ABC中,角A,B,C的对边分别为a,b,c,A=$\frac{3π}{4}$,sinB=$\frac{\sqrt{10}}{10}$,D为BC边中点,AD=1.
(Ⅰ)求$\frac{b}{c}$的值;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将直线l1:x-y-3=0,绕它上面一定点(3,0)沿逆时针方向旋转15°得直线l2,则l2的方程为$\sqrt{3}$x-y-3$\sqrt{3}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=f(x)在R上为奇函数,当x>0时,f(x)=3x2-9,则f(-2)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.销售甲、乙两种商品所得利润分别是P(单位:万元)和Q(单位:万元),它们与投入资金t(单位:万元)的关系有经验公式P=$\frac{1}{5}$t,Q=$\frac{3}{5}\sqrt{t}$.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(单位:万元),
(1)试建立总利润y(单位:万元)关于x的函数关系式;
(2)当对甲种商品投资x(单位:万元)为多少时?总利润y(单位:万元)值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知抛物线C:y2=8x的焦点为F,准线l与x轴的交点为M,点P在抛物线上,且|PM|=$\sqrt{2}$|PF|,则△PMF的面积为(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设f(x)的图象在区间[a,b]上不间断,且f(a)f(b)<0,用二分法求相应方程的根时,若f(a)<0,f(b)>0,f($\frac{a+b}{2}$)>0,则取有根的区间为$(a,\frac{a+b}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a>0,b>0,若$\sqrt{3}$是3a与3b的等比中项,则ab的最大值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

同步练习册答案