精英家教网 > 高中数学 > 题目详情
8.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则$\overrightarrow{AD}$•$\overrightarrow{AC}$=32.

分析 运用直角三角形斜边的中线等于斜边的一半,可得AD=BD=5,即AB=10,再由勾股定理可得AC,再由向量数量积的定义,计算即可得到所求值.

解答 解:在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,
可得AD=BD=5,即AB=10,
由勾股定理可得AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=8,
则$\overrightarrow{AD}$•$\overrightarrow{AC}$=|$\overrightarrow{AD}$|•|$\overrightarrow{AC}$|•cosA=5×8×$\frac{8}{10}$=32.
故答案为:32.

点评 本题考查向量的数量积的定义,同时考查平面几何的性质:勾股定理和直角三角形斜边的中线等于斜边的一半,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设集合A={x|-1<x<2},B={x|y=lg(x-1)},则A∩(∁RB)=(  )
A.(-1,1)B.[2,+∞)C.(-1,1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响,我校随机抽取100名学生,对学习成绩和学案使用程度进行了调查,统计数据如表所示:
善于使用学案不善于使用学案总计
学习成绩优秀40
学习成绩一般30
总计100
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.0500.0100.001
k03.8416.63510.828
已知随机抽查这100名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
(1)请将上表补充完整(不用写计算过程);
(2)试运用独立性检验的思想方法分析:有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
(3)利用分层抽样的方法从善于使用学案的同学中随机抽取6人,从这6人中抽出3人继续调查,设抽出学习成绩优秀的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知关于x的不等式|x-m|≤n的解集为{x|0≤x≤4}.
(1)求实数m、n的值;
(2)设a>0,b>0,且a+b=$\frac{m}{a}$+$\frac{n}{b}$,求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则$\overrightarrow{BD}$•$\overrightarrow{AC}$=-32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x+a|-2a,其中a∈R.
(1)当a=-2时,求不等式f(x)≤2x+1的解集;
(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点P(a,b)在函数y=$\frac{{e}^{2}}{x}$上,且a>1,b>1,则alnb的最大值为e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}x,0<x<1\\ \frac{1}{x},x≥1\end{array}$,g(x)=af(x)-|x-1|.
(Ⅰ)当a=0时,若g(x)≤|x-2|+b对任意x∈(0,+∞)恒成立,求实数b的取值范围;
(Ⅱ)当a=1时,求g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A是抛物线M:y2=2px(p>0)与圆$C:{x^2}+{(y-2\sqrt{2})^2}={a^2}$在第一象限的公共点,且点A到抛物线M焦点F的距离等于a.若抛物线M上一动点到其准线与到点C的距离之和的最小值为2a,则p为(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

同步练习册答案