分析 利用x2+y2=ρ2,x=ρcosθ,y=ρsinθ,可把曲线C的极坐标方程化为直角坐标方程.将直线l的参数方程消去t化为直角坐标方程:$y=-\frac{4}{3}(x-2)$,
令y=0,可得M点的坐标为(2,0).利用|MN|≤|MC|+r即可得出.
解答 解:曲线C的极坐标方程可化为ρ2=2ρsinθ.又x2+y2=ρ2,x=ρcosθ,y=ρsinθ,
∴曲线C的直角坐标方程为x2+y2-2y=0.
将直线l的参数方程消去t化为直角坐标方程:$y=-\frac{4}{3}(x-2)$,
令y=0,得x=2,即M点的坐标为(2,0).又曲线C的圆心坐标为(0,1),
半径r=1,则$|{MC}|=\sqrt{5}$,
∴$|{MN}|≤|{MC}|+r=\sqrt{5}+1$.
点评 本题考查了极坐标方程化为直角坐标方程、点到直线的距离,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{π}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com