精英家教网 > 高中数学 > 题目详情
9.直线xcosθ+y-1=0(θ∈R)的倾斜角的取值范围是(  )
A.[0,π)B.[$\frac{π}{4}$,$\frac{3π}{4}$]C.[-$\frac{π}{4}$,$\frac{π}{4}$]D.[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π)

分析 先根据直线的方程求出斜率,再求出斜率的取值范围,再根据倾斜角的范围进一步确定倾斜角的范围.

解答 解:直线xcos θ+y-1=0 (θ∈R)的斜率为 k=-cosθ,
∴-1≤k≤1,又直线的倾斜角的范围是[0,π),
故倾斜角α满足0≤α≤$\frac{π}{4}$或$\frac{3π}{4}$≤α<π.
故倾斜角的范围是[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).
故选D.

点评 本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.某算法流程图如右图,输入x=0,得结果是y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某大学志愿者协会中,数学学院志愿者有8人,其中含5名男生,3名女生;外语学院志愿者有4人,其中含1名男生,3名女生.现采用分层抽样的方法(层内采用简单随机抽样)从两个学院中共抽取3名同学,到希望小学进行支教活动.
(1)求从数学学院抽取的同学中至少有1名女同学的概率;
(2)记ξ为抽取的3名同学中男同学的人数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校对高一年级学生暑假参加社区服务的次数进行了统计,随机抽取了M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频率分布统计表和频率分布直方图如下:
分组频数频率
[10,15)100.25
[15,20)25n
[20,25)mp
[25,30)20.05
合计MN
(1)求表中n,p的值和频率分布直方图中a的值,并估计该校高一学生参加社区服务超过20次的概率;
(2)试估计该校高一学生暑假参加社区服务次数的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F2(3,0),过F2的直线交椭圆C于A,B两点,且M(1,-1)是线段AB的中点.
(1)求椭圆C的离心率;
(2)已知F1是椭圆的左焦点,求△F1AB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.椭圆$\frac{x^2}{12}+\frac{y^2}{3}=1$的焦点分别为F1和F2,点P在椭圆上,若|PF1|=2,则|PF2|=$4\sqrt{3}-2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,已知∠BAC=90°,AB=6,D点在斜边BC上,$\overrightarrow{CD}=\frac{1}{2}\overrightarrow{DB}$,则$\overrightarrow{AB}•\overrightarrow{AD}$的值为(  )
A.48B.24C.12D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义实数集R的子集M的特征函数为${f_M}(x)=\left\{\begin{array}{l}1,x∈M\\ 0,x∈{C_R}M\end{array}\right.$.若A,B⊆R,对任意x∈R,有如下判断:
①若A⊆B,则fA(x)≤fB(x);      ②fA∩B(x)=fA(x)•fB(x);
③${f_{{C_R}A}}(x)=1-{f_A}(x)$;               ④fA∪B(x)=fA(x)+fB(x).
其中正确的是①②③.(填上所有满足条件的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=cos2x-asinx+2,若对于任意的实数x,都有f(x)≤5,求实数a的范围.

查看答案和解析>>

同步练习册答案