精英家教网 > 高中数学 > 题目详情
18.已知点P在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,F1F2分别是其左、右焦点,若|PF1|=2|PF2|,则该椭圆的离心率的取值范围是(  )
A.(0,$\frac{1}{3}$]B.($\frac{1}{3}$,1)C.(0,$\frac{1}{3}$)D.[$\frac{1}{3}$,1)

分析 由椭圆的第二定义结合|PF1|=2|PF2|,可得 e(x+$\frac{{a}^{2}}{c}$)=2•e($\frac{{a}^{2}}{c}$-x),解得x=$\frac{a}{3e}$,由题意可得-a≤$\frac{a}{3e}$≤a,解不等式求得离心率e的取值范围.

解答 解:设点P的横坐标为x,∵|PF1|=2|PF2|,则由椭圆的定义可得 e(x+$\frac{{a}^{2}}{c}$)=2•e($\frac{{a}^{2}}{c}$-x),
∴x=$\frac{a}{3e}$,由题意可得-a≤$\frac{a}{3e}$≤a,
∴$\frac{1}{3}$≤e<1,则该椭圆的离心率e的取值范围是[$\frac{1}{3}$,1),
故选:D.

点评 本题考查椭圆的第二定义,考查椭圆的简单性质的应用,灵活运用椭圆第二定义是解答该题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.变量x,y的散点图如图所示,那么x,y之间的样本相关系数r最接近的值为(  )
A.1B.-0.5C.0D.0.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的四个顶点按逆时针排列顺序依次为A,B,C,D,若四边形ABCD的内切圆恰好过焦点,则椭圆的离心率e2为(  )
A.$\frac{{3-\sqrt{5}}}{2}$B.$\frac{{3+\sqrt{5}}}{8}$C.$\frac{{\sqrt{5}-1}}{2}$D.$\frac{{1+\sqrt{5}}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a>b>0,椭圆C1的方程为$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1,双曲线C2的方程为$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1,C1与C2的离心率之积为$\frac{{\sqrt{3}}}{2}$,则C2的渐近线方程为(  )
A.$\sqrt{2}$x±y=0B.x±$\sqrt{2}$y=0C.2x±y=0D.x±2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知A为椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的一个动点,直线AB,AC分别过焦点,F1,F2,且与椭圆交于B,C两点,若当AC⊥x轴时,恰好有|AF1|:|AF2|=3:1,则该椭圆的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1上一点P到它的左焦点的距离是2,那么点P到右焦点的距离为(  )
A.2B.4C.6D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆M的中心在坐标原点,焦点在x轴上,焦距为4$\sqrt{3}$,且两准线间距离为$\frac{16\sqrt{3}}{3}$.
(1)求椭圆M的标准方程;
(2)过椭圆M的上顶点A作两条直线分别交椭圆于点B,C(异于点A),且它们的斜率分别为k1,k2,若k1k2=-$\frac{1}{4}$,求证:直线BC恒过一个定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$\overrightarrow{a}$=(1,1,0),$\overrightarrow{b}$=(-1,0,2),若向量$\overrightarrow{a}$与$\overrightarrow{a}$+k$\overrightarrow{b}$垂直,则实数k的值为2.

查看答案和解析>>

同步练习册答案