精英家教网 > 高中数学 > 题目详情
13.若两平行线3x+4y-4=0与ax+4y+b=0(b>0)间的距离是2,则a+b等于(  )
A.9B.-18C.2D.10

分析 根据两直线平行求出a的值,再两平行线间的距离求出b的值即可.

解答 解:∵直线3x+4y-4=0与ax+4y+b=0(b>0)平行,
∴a=3,
又平行线3x+4y-4=0与3x+4y+b=0间的距离是2,
∴$\frac{|-4-b|}{\sqrt{{3}^{2}{+4}^{2}}}$=2,
解得b=6,
∴a+b=3+6=9.
故选:A.

点评 本题考查了两条直线平行,对应系数相等的应用问题,也考查了两条平行线间距离公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.从编号001,002,…,500个产品中用系统抽样的方法抽取一个样本,已知样本编号从小到大依次为007,032,…,则样本中最大的编号应该为(  )
A.483B.482C.481D.480

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,f(0)=0,求出函数f(x)的零点;
(2)若f(x)同时满足下列条件:①当x=-1时,函数f(x)有最小值0,②f(1)=1求函数f(x)的解析式;
(3)若f(1)≠f(3),证明方程f(x)=$\frac{1}{2}$[f(1)+f(3)]必有一个实数根属于区间(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,内角A,B,C的对边分别为a,b,c,且a2+c2-ac=b2
(1)求角B的大小;
(2)若b=3,sinC=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设p:-1<x<3,q:x>5,则p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题p:?x0∈(-∞,0),2${\;}^{{x}_{0}}$<3${\;}^{{x}_{0}}$,命题q:?x∈[-1,1],cosx>$\frac{1}{2}$,则下列命题为真命题的是(  )
A.p∧qB.p∨(¬q)C.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+bx2+cx(b,c∈R)的图象在点x=1处的切线方程为6x-2y-1=0,f′(x)为f(x)的导函数.
(Ⅰ)求b,c的值;
(Ⅱ)设g(x)=aex(a∈R)(e=2.71828…是自然对数的底数),若存在x0∈[0,2],使g(x0)=f′(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题p:实数t满足(t-a)(t-2a)<0(a>0),命题q:方程$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{t-6}$=1表示双曲线
(1)若a=1且p为假命题,求实数t的取值范围;
(2)若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点分别为F1,F2,点P为双曲线下支上一点,且sin∠PF1F2=$\frac{3}{5}$,若线段PF1的垂直平分线恰好经过F2,则双曲线的渐近线方程为(  )
A.4x±3y=0B.3x±4y=0C.3x±5y=0D.5x±3y=0

查看答案和解析>>

同步练习册答案