精英家教网 > 高中数学 > 题目详情
一名同学想要报考某大学,他必须从该校的7个不同的专业中选出5个,并按第一志愿,第二志愿,…,第五志愿顺序填进志愿表,若A专业不能作为第一志愿,B专业不能作为第二志愿,且A、B专业不能相邻,则不同的填法种数有(  )
A、1560B、1500
C、1080D、960
考点:排列、组合的实际应用
专题:应用题,排列组合
分析:由于A专业不能作为第一志愿,B专业不能作为第二志愿,且A、B专业不能相邻,故对A、B专业,分类讨论,朋友排列组合知识,即可得出结论.
解答: 解:若A、B专业不选,则有
A
5
5
=120种填法;若A专业选、B专业不选,则有
C
4
5
C
1
4
A
4
4
=480种填法,
若A专业不选、B专业选,则有
C
4
5
C
1
4
A
4
4
=480种填法,
若A、B专业都选,再选出3个专业,有
C
3
5
=10种方法,A从第2志愿开始:(1)①A ③④⑤,B只能在④、⑤位置,这时有:2×6=12种;(2)①②A ④⑤,B只能在①、⑤位置,这时有:2×6=12种;(3)①②③A ⑤,B只能在①位置,这时有:1×6=6种;(4)①②③④A,B只能在①、③位置,这时有:2×6=12种;
因此在A、B均选的情况下,有10×(12+12+6+12)=420种,
故共有120+480+480+420=1500种不同的填法.
故选B.
点评:本题考查排列组合知识的运用,考查分类讨论的数学思想,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),过其焦点且斜率为-1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为-2,则该抛物线的准线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

由0,1,2,3,4这5个数字组成没有重复数字且个位上的数字不能为1的3位数共有(  )
A、28个B、36个
C、39个D、42个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上一点C,过双曲线中心的直线交双曲线于A,B两点,记直线AC,BC的斜率分别为k1,k2,当
2
k1k2
+ln|k1|+ln|k2|最小时,双曲线离心率为(  )
A、
2
B、
3
C、
2
+1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AB是⊙O的切线,在下列条件中,能判定AB⊥CD的是(  )
A、AB与⊙O相切于点C,CD为⊙O的一条弦
B、CD过圆心O
C、AB与⊙O相切于点C,CD过圆心
D、CD也是⊙O的切线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
u
=(-2,2,5)
v
=(6,-4,4)
u
v
分别是平面α,β的法向量,则平面α,β的位置关系式(  )
A、平行
B、垂直
C、所成的二面角为锐角
D、所成的二面角为钝角

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线2x-y+6=0过双曲线C:
x2
m
-
y2
8
=1(m>0)的一个焦点,则双曲线的离心率为(  )
A、
2
B、2
C、3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(t)=
1-t
1+t
,g(x)=cosx•f(sinx)+sinx•f(cosx),x∈(
π
2
,π).
(1)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[-π,π])的形式;
(2)若g(x0)=
4
2
5
,且x0∈(
π
2
4
),求g(x0+
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

汽车是碳排放量比较大的行业之一,某地规定,从2014年开始,将对二氧化碳排放量超过130g/km的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km).
80110120140150
100120x100160
经测算得乙品牌轻型汽车二氧化碳排放量的平均值为
.
x
=120g/km.
(1)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过130g/km的概率是多少?
(2)求表中x的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性.

查看答案和解析>>

同步练习册答案