精英家教网 > 高中数学 > 题目详情
已知曲线C的极坐标方程为:ρ2-2ρcosθ-4ρsinθ+4=0,曲线C上的任意一个点P的直角坐标为(x,y),则3x+4y的取值范围为
 
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:利用x=ρcosθ,y=ρsinθ,ρ2=x2+y2可把曲线C的极坐标方程化为直角坐标方程,得到圆心与半径r,令3x+4y=t,由于点P(x,y)是曲线C上的任意一个点,可得圆心C(1,2)到直线的距离d≤r.利用点到直线的距离公式即可得出.
解答: 解:由曲线C的极坐标方程:ρ2-2ρcosθ-4ρsinθ+4=0,化为直角坐标方程:x2+y2-2x-4y+4=0,
化为(x-1)2+(y-2)2=1.可得圆心C(1,2),半径r=1.
令3x+4y=t,
∵点P(x,y)是曲线C上的任意一个点,∴圆心C(1,2)到直线的距离d≤r.
|3+4×2-t|
32+42
≤1
,化为|t-11|≤5,解得6≤t≤16.
∴3x+4y的取值范围为[6,16].
故答案为:[6,16].
点评:本题考查了曲线的极坐标方程化为直角坐标方程的公式、点到直线的距离公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于任意正整数k,证明:2(
k+1
-
k
1
k
<2(
k
-
k-1
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),若存在x0,使得f(x0)=x0,则称x0是函数y=f(x)的一个不动点,设二次函数f(x)=ax2+(b+1)x+b-2.
(1)当a=2,b=1时,求函数f(x)的不动点;
(2)若对于任意实数b,函数f(x)恒有两具不同的不动点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,现要在边长为100m的正方形ABCD内建一个交通“环岛”.以正方形的四个顶点为圆心在四个角分别建半径为xm(x不小于9)的扇形花坛,以正方形的中心为圆心建一个半径为
1
5
x2
m的圆形草地.为了保证道路畅通,岛口宽不小于60m,绕岛行驶的路宽均小于10m.
(1)求x的取值范围;(运算中
2
取1.4)
(2)若中间草地的造价为a元/m2,四个花坛的造价为
4
33
ax
元/m2,其余区域的造价为
12a
11
元/m2,当x取何值时,可使“环岛”的整体造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C1:x2=4y的焦点为F,曲线C2与C1关于原点对称,过曲线C2上任意一点P作C1的两条切线PA、PB,切点为A、B,证明:线段AB的中点M的坐标满足曲线方程y=
3
4
x2

查看答案和解析>>

科目:高中数学 来源: 题型:

将一个长方体沿相邻三个面的对角线截出一个棱锥,则棱锥的体积与剩下的几何体的体积的比是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=
an+1,n为奇数
-2an,n为偶数
,且a1=1,设bn=a2n+2-a2n,则数列{bn}的通项公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an},其前n项和Sn满足4Sn=an2+2an-8,数列{bn}是等差数列,b1=
3
-5,b2=
3
-11.
(1)求数列{an},{bn}的通项公式;
(2)设cn=
Sn
n
+bn
,数列{cn}中是否存在不同的三项构成等比数列?若存在,请指出符合条件的项满足的条件:若不存在.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某个四面体的三视图,该四面体的体积为
 

查看答案和解析>>

同步练习册答案