精英家教网 > 高中数学 > 题目详情
1.如图,BC是圆O的直径,点F在弧BC上,点A为劣弧$\widehat{BF}$的中点,作AD⊥BC于点D,BF与AD交于点E,与AC交于点G.
(1)求证:AE=BE;
(2)若圆O的半径为5,AB=6,求AG.

分析 (1)根据圆周角定理以及互余的角的性质证明AE和BE的关系;(2)根据相似三角形的性质以及勾股定理求出AG的长即可.

解答 (1)证明:∵A是弧BF的中点,
∴BA=AF,∴∠ABF=∠ACB,
又∵AD⊥BC,BC是圆O的直径,
∴∠BAD=∠ACB,
∴∠ABF=∠BAD,
∴AE=BE;
(2)解:RT△ABC中由勾股定理得AC=8,
由△ABG∽△ACB得:AB2=AG•AC,
∴AG=$\frac{9}{2}$.

点评 本题主要考查了圆的有关性质,考查相似三角形的性质以及勾股定理的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为b>a>c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,ABCD是边长为1的正方形,O是正方形的中心,PO⊥底面ABCD,PO=1,E是PC的中点. 求证:
(1)PA∥平面BDE;
(2)平面PAC⊥平面BDE.
(3)求直线PA与平面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合A={x|0<x<5},B={x|-3<x<2},则A∪B=(  )
A.(0,2)B.[-3,5]C.[0,2]D.(-3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知三棱柱ABC-A1B1C1的底面为等腰三角形,且平面B1BCC1⊥平面ABC,C1B⊥BC,M是线段AB上的点,且∠ACM=∠BCM=60°,CA=CB=$\frac{{\sqrt{3}}}{3}$C1B.
(Ⅰ)求证:CM⊥AC1
(Ⅱ)求直线CC1与平面B1CM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(其中α为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.
(Ⅰ)若A,B为曲线C1,C2的公共点,求直线AB的斜率;
(Ⅱ)若A,B分别为曲线C1,C2上的动点,当|AB|取最大值时,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知复数z=$\frac{1+2i}{{i}^{3}}$,则它的共轭复数$\overline{z}$=-2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设点P为函数f(x)=x3-$\frac{1}{4x}$图象上任一点,则f(x)在点P处的切线的倾斜角α的取值范围为(  )
A.[$\frac{π}{3}$,π)B.($\frac{π}{6}$,$\frac{π}{3}$)C.($\frac{π}{6}$,$\frac{π}{2}$)D.[$\frac{π}{3}$,$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.$\int_0^{\frac{π}{2}}{{2sin}^2}{xdx=}_{\;}$$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案