精英家教网 > 高中数学 > 题目详情
2.在等差数列{an}中,若a2+a6+a8+a14=20,则a8=(  )
A.10B.5C.2.5D.1.25

分析 由等差数列的性质和题意可得a8的方程,解方程可得.

解答 解:由等差数列的性质可得a2+a14=a6+a8=2a8
又∵a2+a6+a8+a14=20,
∴4a8=20,
解得a8=5
故选:B.

点评 本题考查等差数列的通项公式和等差数列的性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.下列式子或表格:
①y=$\sqrt{1-{a}^{2}}$+loga(x-1)(a>1)
②y=2x,其中x∈{0,1,2,3},y∈{0,2,4,6}
③x2+y2=1
④x2+y2=1(y≥0)
X12345
y9089898595
其中表示y是x的函数的是①②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.对于集合A,B,定义集合运算,A-B={x|x∈A且x∉B},则下列结论中不正确的是(  )
A.若A-B=A,则一定有B=∅B.若A=B,则A-B=∅
C.(A-B)∩(B-A)=∅D.(A-B)∪(B-A)=(A∪B)-(A∩B)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-3tx+8,x≤8}\\{(t-39)\sqrt{x},x>8}\end{array}\right.$,记an=f(n)(n∈N*),若数列{an}单调递减,则实数t的取值范围是(5,7).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列{an}中,an=$\frac{n}{2}$-$\frac{3}{2}$,则a2+a5+a8+…+a26=$\frac{99}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.${(x-2+\frac{1}{x})^4}$展开式中的常数项为70.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\frac{sinαcosα}{1-cos2α}$=1,tan(α-β)=-$\frac{2}{3}$,求tan(β-2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设总体X的概率密度为f(x)=$\left\{\begin{array}{l}{{λ}^{2}x{e}^{-λx}\\;x>0}\\{0\\;其他}\end{array}\right.$,其中参数λ(λ>0),未知X1,X2,…,Xn是来自总体X的简单随机样本.
(1)求参数λ的估计量;
(2)求参数λ的最大似然估计量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列函数的定义域.
(1)f(x)=(3x2-1)0
(2)f(x)=$\frac{1}{{x}^{2}-1}$;
(3)f(x)=$\frac{2x-1}{|x|-x}$.

查看答案和解析>>

同步练习册答案