精英家教网 > 高中数学 > 题目详情

【题目】格纸中每个正方形的边长为1,粗线部分是一个几何体的三视图,则该几何体最长棱的棱长是

A. 3 B. 6 C. D. 5

【答案】D

【解析】画出立体图(如图).由图知,该几何体最长棱的棱长是5.

点睛:三视图问题的常见类型及解题策略

(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.

(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.

(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[5060),[6070),[7080),[8090),[90100]

1)求图中a的值;

2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[5090)之外的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年5月13日第30届大连国际马拉松赛举行,某单位的10名跑友报名参加了半程马拉松、10公里健身跑、迷你马拉松3个项目(每人只报一项),报名情况如下:

项目

半程马拉松

10公里健身跑

迷你马拉松

人数

2

3

5

(其中:半程马拉松公里,迷你马拉松公里)

(1)从10人中选出2人,求选出的两人赛程距离之差大于10公里的概率;

(2)从10人中选出2人,设为选出的两人赛程距离之和,求随机变量的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:
·(1)y=|cos(2x+ )|最小正周期为π;
·(2)函数y=tan 的图象的对称中心是(kπ,0),k∈Z;
·(3)f(x)=tanx﹣sinx在(﹣ )上有3个零点;
·(4)若 ,则
其中错误的是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

)讨论函数的单调性;

)若函数上有最小值,且最小值为,满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)当时,求函数的单调区间;

(2)令,其图象上任意一点处切线的斜率恒成立,求实数的取值范围.

(3)当时,方程在区间内有唯一实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面△ABC是等边三角形,侧面为正方形,且平面ABC 为线段上的一点.

(Ⅰ) 若∥平面A1CD,确定D的位置,并说明理由;

(Ⅱ) 在(Ⅰ)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+x2+mx在x=1处有极小值,

g(x)=f(x)﹣x3x2+x﹣alnx.

(1)求函数f(x)的单调区间;

(2)是否存在实数a,对任意的x1、x2∈(0,+∞),且x1≠x2,有恒成立?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案