精英家教网 > 高中数学 > 题目详情
某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为
 
(用数字作答).
考点:几何概型
专题:概率与统计
分析:设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|30≤x≤50,30≤y≤50}是一个矩形区域,则小张比小王至少早5分钟到校事件A={(x,y)|y-x≥5}作出符合题意的图象,由图根据几何概率模型的规则求解即可.
解答: 解:设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|30≤x≤50,30≤y≤50}是一个矩形区域,对应的面积S=20×20=400,
则小张比小王至少早5分钟到校事件A={x|y-x≥5}作出符合题意的图象,则符合题意的区域为△ABC,联立
y-x=5
y=50
得C(45,50),联立
y-x=5
x=30
得B(30,35),则S△ABC=
1
2
×15×15,由几何概率模型可知小张比小王至少早5分钟到校的概率为
1
2
×15×15
20×20
=
9
32

故答案为:
9
32
点评:本题考查几何概率模型与模拟方法估计概率,求解的关键是掌握两种求概率的方法的定义及规则,求出对应区域的面积是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=
π
3
,M为BC上一点,且BM=
1
2

(Ⅰ)证明:BC⊥平面POM;
(Ⅱ)若MP⊥AP,求四棱锥P-ABMO的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有
 
株树木的底部周长小于100cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=-5ex+3在点(0,-2)处的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,O为原点,A(-1,0),B(0,
3
),C(3,0),动点D满足|
CD
|=1,则|
OA
+
OB
+
OD
|的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,直线x+2y-3=0被圆(x-2)2+(y+1)2=4截得的弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为(  )
A、200,20
B、100,20
C、200,10
D、100,10

查看答案和解析>>

科目:高中数学 来源: 题型:

根据如下样本数据,得到回归方程
y
=bx+a,则(  )
x345678
y4.02.5-0.50.5-2.0-3.0
A、a>0,b>0
B、a>0,b<0
C、a<0,b>0
D、a<0,b<0

查看答案和解析>>

同步练习册答案