分析 (1)由点A在直线l上,代入可得$\sqrt{2}$cos($\frac{π}{4}$-$\frac{π}{4}$)=a,解得a.由ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$,展开化为:$\frac{\sqrt{2}}{2}ρ(cosθ+sinθ)$=$\sqrt{2}$,利用互化公式即可得出.
(2)圆C的极坐标方程为ρ=2cosα,即ρ2=2ρcosα,化为:(x-1)2+y2=1.可得圆心,半径,求出圆心到直线的距离d,与半径r比较大小关系,即可得出.
解答 解:(1)由点A在直线l上,∴$\sqrt{2}$cos($\frac{π}{4}$-$\frac{π}{4}$)=a,解得a=$\sqrt{2}$.
ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$,展开化为:$\frac{\sqrt{2}}{2}ρ(cosθ+sinθ)$=$\sqrt{2}$,
从而直线l的直角坐标方程为:x+y-2=0.
(2)圆C的极坐标方程为ρ=2cosα,即ρ2=2ρcosα,
化为:x2+y2=2x,配方为:(x-1)2+y2=1.
∴圆心为(1,0),半径r=1,
∴为圆心到直线的距离d=$\frac{|1+0-2|}{\sqrt{2}}$=$\frac{1}{\sqrt{2}}$<1.
所以直线与圆相交.
点评 本题考查了极坐标方程化为直角坐标方程、直线与圆的位置关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直角三角形 | B. | 等腰直角三角形 | C. | 正三角形 | D. | 钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 16 | C. | 18 | D. | 20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com